
CPRE 581 Final Report
Jake Hafele, Gregory Ling, Thomas Gaul

Department of Electrical and Computer Engineering
Iowa State University, Ames, IA 50014

ABSTRACT

Branch predictor designs have often sought out
higher prediction accuracy’s to achieve a higher IPC
value and better throughput for instruction flows. As
new designs and architectures are proposed, the main
center of focus in terms of improvement is prediction
accuracy, with little room to include variations in terms
of area, power, or timing constraints. By comparing
different branch predictor designs such as TAGE, tour-
nament, global, and more, we are able to analyze the
power, area, and timing implications in the context
of a soft-core processor design on a synthesized FPGA
application. Utilizing Chipyard, we can generate RTL
designs and synthesize multiple variations of a softcore
(BOOM) processor to compare Vivado synthesis results
with a small sample of SPEC benchmarks in parallel
on reconfigured hardware.

I. INTRODUCTION

From as early as 1981, researchers have investigated
the topic of branch prediction in the context of high
level architecture designs. J. E. Smith [1] proposed
multiple strategies including static predict if taken
designs and dynamic designs which maintain a table
of most recent branches or a 2-bit counter to predict
strongly taken or not taken. For each of these compared
designs, the main determination of branch predictor
performance was in terms of prediction accuracy,
where a higher prediction accuracy would lead to less
discarded instructions or latency on a branch mispre-
diction. In following works, such as Yeh and Patt’s [2]
two level predictor analysis, multiple varying prediction
schemes are compared between global, per-address,
and per-set schemes for each branch prediction level,
with again prediction accuracy as the only factor for
performance. While Yeh and Patt did only analyze
branch predictor tables with less than 512K bits, that
was the only consideration to hardware complexity.
For many of these papers proposing new architectures,

analyzing the impacts of branch predictors in terms of
area, power, or logical delay fall to the side in terms
of performance comparison.

In terms of complexity, branch predictors have
become increasingly advanced to satisfy the high
demand of issuing multiple instructions per cycle in
modern processors. In newer technology nodes, it
can be seen that as technology nodes decrease in
size, shortened clock cycles and larger wire delays will
become a much more prevalent issue [3]. As the clock
period decreases, this can lead to more architectural
units impacting the critical path and delay of the
design, which can lead to the hardware complexity
and delay impact of branch predictors becoming more
significant. It can also be seen that increasing the
delay of a branch predictor to improve prediction
accuracy is never a good trade off [4], leading to
the motivation that the comparison of delay between
modern branch predictor implementations should be
further investigated. While the referenced paper does
use Gshare as a baseline prediction model, three new
architectures are proposed, instead of following up
work on previously implemented prediction designs.

When considering options for improvement for
branch prediction or many other areas of improvement
throughout a processor, bigger correlates to at least
a marginal improvement [5]. Thus, when making the
optimal theorized processor, many sections would be of
infinite size. However, when it comes to implementing
a design in hardware, certain decisions need to be
made due to hardware limitations. Branch predictors
with a BTB that consists of a size of a small cache can
take up to 10% of CPU power [6]. Now, different branch
prediction strategies have varying power consump-
tion and size requirements. Each of these prediction
strategies has a different size where their benefits
per size increase fall off. With the limited power
capabilities of a processor, power to improvement must
be considered as increasing the power consumption of



different segments of the processor yields different
levels of improvement. In the work we explored,
they investigate the miss rate and performance of
many branch prediction algorithms, but rarely do they
compare the power cost to performance and not across
multiple approaches.

Similar to power, the area required by different
strategies differs and increases as the size of each
strategy increases [7]. With the decline in Moore’s law,
relying on being able to pack more into the same area
is no longer an option either, so architecture designers
need to be wise about how they spend their area to
maximize their performance benefits. When looking
at other area-intensive performance improvements, it
may be found that the area is better spent increasing
cache sizes or instruction window size [5]. Like power,
the concern of area required by branch prediction
strategies is not investigated by many papers but is a
crucial consideration when implementing these in a
design.

For this work, our motivation was to combine
existing branch predictor configurations and utilize
an open-source platform to generate area, power,
and timing results in an adequate time frame, to
further focus on the comparison and effects of varying
predictor configurations. By utilizing Chipyard, we
would be able to apply different premade branch
predictor configurations such as TAGE, Tournament,
and GSHare, and apply our own custom configurations
such as Local, Global, and Null. This will enable us to
determine area, power, and timing results from Vivado
synthesis by utilizing generated RTL with Chipyard,
and to generate a reconfigurable bitstream for an
application FPGA which can run benchmark results.
Then, we would be able to compare synthesis results
with the SPEC benchmark performance metrics for a
sample set of ASTER, BZIP2, and MCF benchmarks.

II. RELATED WORK

To recontextualize branch predictors in terms of
area, power, and timing constraints, we must analyze
previously published branch predictor designs, as well
as analyzing other existing works that consider other
factors of performance besides just prediction accuracy.
By analyzing previous prediction schemes, we will
get a better idea of how to model them in Chipyard,
and gain further knowledge in how to present our
results. By using more modern works related to other

constraints such as area, power, and delay, we will
also learn more about what is done and how we can
recontextualize prediction accuracy between each of
the three additional factors for performance.

A. Branch Predictor History

One of the earliest works in branch prediction was
presented by J. E. Smith [1], which presented multiple
static and dynamic branch prediction schemes within
the context of an improved prediction accuracy. The
complexity of these designs varied between static
predictions which would always assume branch taken,
or more complex schemes where a branch would
prediction would be determined on the previous
result of the branch, based on the program counter
address for the instruction memory. While each of
these models were driven based on their prediction
accuracy, multiple different FORTRAN benchmarks
were used, which shows that it is important to run
test programs with varying instruction sets, to test
the full capabilities of each branch prediction scheme.
Alongside this, multiple table sizes were considered in
terms of size for dynamic branch prediction history
results, which could benefit out own Chipyard results.

As authors sought out higher prediction accuracy’s,
more works were published, such as Yeh and Patt’s [2]
comparison of dynamic predictors which used multiple
variations of two-level schemes. In this paper, three
types of predictor schemes were applied, including
using a history of the last N branches used (Global),
the last N branches of the same branch PC address
(per-address), or the last N branches in the same set
(per-set). Each of these variations were applied for both
the first and second level of the dynamic predictors,
leading to 9 total variations to analyze for prediction
accuracy, for multiple SPEC benchmarks. One useful
piece from this paper that could be examined is
the comparison of hardware cost for each of the
9 configurations, based on the number of branch
history table entries and number of branch sets. This
work also modeled many varying branch prediction
schemes based on varying branch history lengths, and
was cut off after 512K bits, showing that some size
considerations were used when comparing prediction
accuracy.

Around a similar time that the above work was
published, S. McFarling [8] presented a novel idea of a
tournament predictor. The core idea of this design is to

2



use both a local and global branch prediction scheme
for the second level predictor, and select between
which predictor to use with a 2-bit prediction counter.
A 2-bit counter would act as a saturated counter to
select the best predictor to use, either the global or
local predictor, based on the performance history of
each predictor, which would drive the choice counter
to either increment or decrement. This work presents
its results in terms of branch accuracy, and models
multiple configurations of tournament predictors in
the same plot, including bimodal, bimodal/Gshare,
and local/gshare combinations. Overall, a prediction
accuracy improvement improved to 98.1%, from the
previously known best prediction scheme of 97.1%.
This work could be re-contextualized in terms of area,
power, and delay constraints to determine if the added
1% in accuracy improvement can be justified in a
real-world application.

More recent research within branch prediction
"SonicBOOM: The 3rd Generation Berkeley Out-of-
Order Machine" [9] has found created the fastest open
source processor iterating on the Berkeley Out-of-Order
Machine which is the processor design we are basing
our research on. This new processor design uses a
Tage branch predictor instead of the previous iteration
of the BOOM processor, which uses a Gshare branch
predictor. With this change, among others, they found
significant performance improvement.

B. Branch Predictor Motivation

The overall inspiration for our project is similar
to that explored by the paper "Branch Prediction,
Instruction-Window Size, and Cache Size: Performance
Trade-offs and Simulation Techniques" [5]. In the
paper, the authors look at the performance benefit
of changing the sizes of their branch prediction unit,
instruction window size, and cache size due to the die
constraints of a design. In it, they specifically explore
a hybrid branch predictor with a global sector, a GAg
predictor, and a PAg predictor. In the paper, they find
that incorrect branch prediction always ends up being
a major bottleneck and tends to be an area where
resources are required.

One of the major aspects of our project goal is
investigating the delays associated with the different
predictor designs, and this idea was explored by "The
Impact of Delay on the Design of Branch Predictors"
[4]. In their paper, they look at the delays caused by

increasing branch predictor size because, up to the
writing of their paper, the only variable explored was
the predictor’s accuracy. The paper specifically looks
at the gshare predictor and a hybrid predictor with
varying sizes. They find that if they just optimize of
accuracy of prediction it has a negative effect overall
due to the heavy delays incurred by their size. They
found their hybrid predictor functioned well until its
delay reached a full cycle, and then everything fell
apart. Due to their findings, they suggest all papers
investigating branch prediction should also report
delays due to the implications they found.

The next major aspects we want to explore in our
project is power and area. Power is discussed well
in the paper "The Impact of Delay on the Design of
Branch Predictors" [6]. They explored the trade-off
between the power and accuracy of four hybrid pre-
dictors and found that the application is an important
consideration due to the varying power consumption.
Another paper, "Low Power/Area Branch Prediction
Using Complementary Branch Predictors," explores
power in addition to area, another aspect we want to
explore [7]. They cover all topics we want to explore
and as a result, propose a complementary branch
predictor. It is a delay, area, and power-efficient branch
prediction algorithm that only completes complicated
predictions for branches that are typically challenging
for the processor to guess which yields good prediction
accuracy without as much of the costs.

A more modern area outside our project’s scope,
which would be an interesting continuation of our
work, would be the security vulnerability of branch
prediction covered in "Spectre Attacks: Exploiting Spec-
ulative Execution" [10]. The paper explored different
ways branch prediction can be exploited to reach
memory sections that are otherwise unreachable. They
explore options to mitigate the risk of these attacks to
the detriment of the processor’s performance.

III. MAIN IDEA

The main idea of our project is to test different
branch predictors to compare their area, power, and
performance. Our main approach is threefold. First,
we wish to use Chipyard to generate an out-of-order
core. Chipyard provides several base branch predictors
we can configure the soft CPU to use. This will provide
us with the base TAGE, Tournament, and GShare
predictors, then we can modify those to create global,

3



local, and null predictors. Second, run these out-of-
order cores on an FPGA with a small Linux distribution.
This portion was mostly plug-and-play, as a prior
research group had already set up running Linux
on the ZCU106 FPGA. Third, run SPEC benchmarks
inside Linux. This is not a simple task as the SPEC
benchmarks are primarily intended to be compiled
and run on the same device, so this will require
cross-compiling and following the alternative SPEC
instructions1 as runspec will not run on the base Linux
installed on the FPGA due to missing Perl and other
dependencies.

IV. METHODOLOGY

Our workflow is centered around using the open-
source tool Chipyard [11], which can provide generated
RTL designs for soft-core processors and synthesized to
FPGAs. Based on the available hardware and resources,
we decided to use the ZCU106 FPGA development
board provided in Durham 310 at Iowa State University.
Another graduate student, Jordan McGhee, was able to
provide previous work with Chipyard and an interface
to using the ZCU board, which varied from the
provided VCU configuration in the default Chipyard
repository.

Both Chipyard and Vivado were used on the provided
ECpE Linux instances, in which we could utilize Conda
to source the required dependencies to run Chipyard.
To generate the FPGA instance, a make command
pointing to the ZCU106 configuration was ran under
the /fpga/ folder from the Chipyard repository. In the
BOOM submodule directory of the Chipyard repository,
a Scala source file titled config-mixins contained mul-
tiple preconfigured branch predictors, including TAGE
(WithTAGELBPD), Tournament (WithBoom2BPD), and
GShare (WithAlpha21264BPD). By editing the branch
predictor class inherited under the WithNSmallBooms
class under config-mixins.scala, we were able to update
the included branch predictor scheme to be used for
RTL generation and the following synthesis.

Alongside utilizing existing branch prediction
schemes, we opted to create our own predictor
schemes for more variation in power, area, and timing
results. To modify the branch predictor configurations,
we were able to modify the global history length, local
history length, and number of local history sets to

1https://www.spec.org/cpu2006/Docs/runspec-avoidance.html

configure local, global, and null prediction schemes.
Using the same config-mixins Scala source code under
the BOOM git submodule, we created three new branch
predictor classes, Global, Local, and Null, to be inserted
into the WithNSmallBooms class to generate RTL for
the BOOM core. These branch predictor classes were
referenced the same way as the predictors above.

Vivado was able to be sourced on the Linux ma-
chines, which could then be used to synthesize the
generated results from Chipyard. After running the
provided FPGA make command provided by Jordan
McGhee, we were able to cancel the Vivado synthesis
and rerun it inside of the Vivado GUI, to step through
synthesis, implementation, and bitstream generation.
After implementation, we were able to generate a
power, timing, and utilization report for each of our
branch configurations, which enabled us to compare
timing, area, and power for each branch predictor. By
generating the bitstream, we would then be able to
program the ZCU106 which is wired over USB to a
Linux machine in Durham 310. A tarball of each Vivado
project was saved via a Git repository to ensure that
each Vivado implementation of the BOOM core and
respective branch configuration could be re-used at
any time.

We were able to use the FireMarshal build provided
by Jordan’s research group, so we did not have to
compile that ourselves. We downloaded the SPEC
benchmarks from the prior CprE 581 homework as-
signment and picked three to cross compiled to riscv
for the FPGA. After cross compiling, we copied the
ASTAR, MCF, and BZIP2 benchmarks to the micro SD
card (benchmarks picked arbitrarily from the SPEC2006
suite), and used runspec to retrieve the test data and
commands to run on the fpga [12]. We used the test
data for these three benchmarks (four commands in
total as BZIP2 has two commands in the test suite).
We used the test suite as the test suite took about 20
minutes for ASTAR on the FPGA, and running a full
reference suite would not be practical. These are not a
valid SPEC benchmark run, but this will give us usable
data for comparison. For timing the benchmarks, the
time command was called with each of the benchmark
commands.

We discovered an issue running the benchmarks
from the micro SD card directly as the micro SD card is
connected via SPI and is extremely slow and unreliable.
To work around this, a RAM-only tmpfs is mounted

4

https://www.spec.org/cpu2006/Docs/runspec-avoidance.html


in /tmp, so the test data is copied to /tmp before
running so all data and executables are in RAM for
the duration of the test and the micro SD card can be
disconnected and not affect the test results.

This process was not automated, so for each proces-
sor you had to open Vivado, program the bitstream to
the FPGA, wait for Linux to boot, copy the tests from
the SD card to a RAM filesystem, then run the tests. A
future goal would be to write a script to automate this
setup as the FPGA can be accessed via a serial port
and Vivado can be scripted to program the FPGA.

V. RESULTS

Method Global Len Local Len Local Sets

TAGE 64 1 0
Tournament 32 32 128

GShare 16 16 1
Local 0 32 128

Global 32 0 0
Null 0 0 0

Table I: Branch Predictor History and set sizes

Figure 1, 2, and 3 represent the synthesized results
of all six branch configurations for the Small BOOM
Core ZCU106 synthesis. As expected, the null predictor
scheme had the least amount of logic cells utilized.
Surprisingly, the global predictor had a lower power
consumption. The TAGE prediction scheme had a
much larger utilization count than most predictors,
specifically including many more registers utilized,
leading to a higher power consumption.

Half of our results were derived from the Vivado
synthesis using the generated RTL for each BOOM
core and branch predictor using Chipyard. Figure 1
demonstrates how many Look-up Tables and registers
were used for each branch predictor configuration, to
allow for comparisons of area for each predictor design.
As expected, the Null predictor (or no predictor), had
the least amount of utilization with both LUTs and
registers, coming in with 87,616 LUTs and 61,583
registers. The Global, Local, GShare, and Tournament
predictor schemes all had very similar utilization
amounts, which all had near 5% additional utilization
for both LUTs and registers. The standout prediction
scheme with the most utilization was TAGE, with a
13% increase in LUT utilization and 22% increase in
register utilization, relative to the Null predictor.

Figure 1: Branch Prediction Utilization Results

Synthesis results for Power consumption was also
generated, as seen in Figure 2. The power consumption
stayed relatively similar, with some variation due to
the different amounts of utilization per the different
predictor schemes. The Null predictor reported a power
rating of 2.326W, which was surprisingly not the lowest
reported. Despite the Global predictor scheme having
a larger utilization count than the Null predictor, it had
a slightly lower power consumption, rating at 2.319W.
Every other prediction scheme followed with increasing
power consumption relative to the Null predictor, as
expected with the higher utilization in cells.

Figure 2: Branch Prediction Power Results

For the final Vivado results, we generated reports for
the Worst Negative Slack (WNS) for each prediction
scheme, in Figure 3. The timing results are heavily
dependent on the constraints placed on the design, so
these could vary by a wide margin. This can also vary
based on the placement and utilization of the design.
The most noteworthy portion of these results were

5



that both the Local and GShare predictors came in
with around 0.2ns of slack, compared to the average of
around 0.4ns for every other design. The main benefit
of these results is to ensure that each design met its
timing requirements and would not face any setup or
hold time violations.

Figure 3: Branch Prediction Slack Results

Once we synthesised the the processor for each
branch prediction scheme we ran each of them on
the ZCU106 with on FireMarshal Figure 4 displays the
user execution time for each branch predictor SPEC
benchmark pair as reported from the system. In each
case the Null predictor executed the slowest and made
a baseline for future graphics. It should be noted when
running the ASTAR benchmark verifying the results
returns and error which is consistent throughout all
the branch predictor configurations.

Figure 4: Branch Prediction Benchmark Execution Time

Comparing the relative performance of each of the
branch predictors is best demonstrated by using the
null predictor as a baseline and then comparing the

speedup of each as shown in Figure 5. Every branch
prediction scheme saw significant speedup over the
Null branch predictor with the largest benefit occurring
in higher level branch prediction schemes on BZIP2.

Figure 5: Branch Prediction Benchmark Speedup

VI. ANALYSIS

The relationship between predictor power and
speedup is shown in Figure 6. From this comparison, it
appears that GShare has a comparable performance to
the TAGE predictor, but also has a lower power usage.
This is surprising as TAGE is generally considered a
more advanced branch predictor than GShare [9].

Figure 6: Branch Prediction Power Speedup Comparison

A similar comparison for utilization is shown in
Figure 7. This shows the utilization of the NULL pre-
dictor was low and TAGE was the highest as expected,
but it also shows that Global, Local, and Tournament
all used very similar utilization and provided very
similar performance. This also reinforces the benefits
of GShare over TAGE in these benchmarks in the lower

6



utilization of GShare compared to TAGE for a similar
speedup.

Figure 7: Branch Prediction Utilization Speedup Comparison

This figure also shows again the unusually low power
consumption of the Global predictor, taking less power
than the NULL predictor, but also using more LUTs
than the NULL predictor. This might be a side affect
of measuring power consumption in Vivado synthesis
rather than a real measurement while running the
benchmark.

We found that in our tests that Tournament per-
formed marginally better than Global and Local, but
has the power (Figure 6) and utilization costs (Figure
7) more akin to Tournament or GShare. As Tournament
is effectively made up of those two branch predictors,
the performance being similar to that Global and Local
seems reasonable. We believe with the relatively small
benchmarks we ran, it did not have enough time to
set the selection between the two of them properly to
achieve a greater benefit as we were expecting.

When running the ASTAR benchmark, there was
a consistent error where every run of the ASTAR
benchmark produced slightly incorrect results:

--- lake.out
+++ lake.out.cmp
@@ -10,7 +10,7 @@

Create reg ways time : 0
Reg ways quantity : 21248

-Total reg way length : 1005921
+Total reg way length : 1005873

Create river ways time : 0
River ways quantity : 250

@@ -28,8 +28,8 @@

Total way length : 612234

Create reg ways time : 0
-Reg ways quantity : 29222
-Total reg way length : 1009555
+Reg ways quantity : 29220
+Total reg way length : 1009318

Create river ways time : 0
River ways quantity : 0

Every ASTAR benchmark run produced the same
output which was not the same as the SPEC-provided
correct output. This indicates that there might be an
issue in the chipyard core itself, but as the error was
consistent across all branch predictors, it is likely not
relevant to our results. All other benchmarks output
the correct value.

VII. FUTURE WORK

In terms of future work, much could be done to
expand our project. To begin, an extended set of SPEC
benchmarks and test suites could be compiled and
utilized to test our current generated BOOM core and
branch predictor configurations. By testing other SPEC
benchmarks, such as GCC, BWAVES, or HMMER, we
could evaluate other corner cases for branch prediction,
with more variation in the types of branching and
addresses. This would be useful in analyzing the
performance results of each predictor scheme, and
ensuring that the three SPEC benchmarks that we
ran for this experiment were not outliers. Additionally
it would be valuable to run longer versions of the
benchmarks we did use to give them a longer section
of time to see benefit from warming up the predictors.

To expand and evaluate more on the branch pre-
diction schemes themselves, more work could also
be done in analyzing different parameters for the
same prediction scheme, such as the global history
length, local history length, and number of local history
sets for a single branch prediction scheme, such as a
Tournament branch predictor. We could then analyze
the area, power, and performance tradeoffs for the
same architectural design, which would help motivate
an ideal configuration for one single scheme based on
area, power, or performance constraints. Given that
this would only require slight tweaks using Chipyard,
this would be very feasible.

7



To investigate further critical variables with hardware
design, our project could be extended to look into
hardware security. Many works explore the security haz-
ards of branch prediction [10], but our work could be
expanded to explore how secure each branch predictor
design is, how they can be altered to provide security,
and how each of those secured branch predictors
performs compared to each other keeping in mind
the physical attributes we have investigated within this
project such as power, area, and delay. Security may
be a hard metric to quantify and would have many
more combinations to try, but any extended investiga-
tion into security would provide very interesting and
practical information.

VIII. CONCLUSION

In this project, we were able to successfully model six
different branch prediction schemes utilizing Chipyard,
Vivado, and a ZCU106 FPGA Development board
to generate synthesis results. We also ran multiple
portions of SPEC benchmarks, including MCF, BZIP2,
and ASTAR, in which we could compare the execution
time and speedup comparisons for each design, with
the context of the synthesized Vivado results. Through-
out this process, we overcame multiple challenges
in utilizing Chipyard, Linux with Firemarshal, and
successfully running benchmarks. With this project and
toolflow, we have set up the potential for future work to
be investigated with branch predictor schemes on real
hardware, to further compare more SPEC benchmarks
or branch predictor configurations using the same
toolflow and methodology.

P.S. hope you are having fun grading Dr. Duwe

REFERENCES

[1] J. E. Smith, “A study of branch prediction strategies,” in Proceed-
ings of the 8th Annual Symposium on Computer Architecture,
ISCA ’81, (Washington, DC, USA), p. 135–148, IEEE Computer
Society Press, 1981.

[2] T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic branch
predictors that use two levels of branch history,” in Proceedings
of the 20th Annual International Symposium on Computer
Architecture, ISCA ’93, (New York, NY, USA), p. 257–266,
Association for Computing Machinery, 1993.

[3] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger, “Clock
rate versus ipc: the end of the road for conventional microar-
chitectures,” in Proceedings of 27th International Symposium
on Computer Architecture (IEEE Cat. No.RS00201), pp. 248–259,
2000.

[4] D. Jimenez, S. Keckler, and C. Lin, “The impact of delay on
the design of branch predictors,” in Proceedings 33rd An-
nual IEEE/ACM International Symposium on Microarchitecture.
MICRO-33 2000, pp. 67–76, 2000.

[5] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark, “Branch pre-
diction, instruction-window size, and cache size: performance
trade-offs and simulation techniques,” IEEE Transactions on
Computers, vol. 48, no. 11, pp. 1260–1281, 1999.

[6] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan,
“Power issues related to branch prediction,” in Proceedings
Eighth International Symposium on High Performance Com-
puter Architecture, pp. 233–244, 2002.

[7] R. Sendag, J. J. Yi, P.-f. Chuang, and D. J. Lilja, “Low power/area
branch prediction using complementary branch predictors,” in
2008 IEEE International Symposium on Parallel and Distributed
Processing, pp. 1–12, 2008.

[8] S. McFarling, “Combining branch predictors,” Tech. Rep. Tech-
nical Note 36, Western Research Laboratory, June 1993.

[9] J. Zhao, B. Korpan, A. Gonzalez, and K. Asanovic, “Sonicboom:
The 3rd generation berkeley out-of-order machine,” in Fourth
Workshop on Computer Architecture Research with RISC-V,
vol. 5, 2020.

[10] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre attacks: Exploiting speculative execution,”
Commun. ACM, vol. 63, p. 93–101, jun 2020.

[11] A. Amid, D. Biancolin, A. Gonzalez, D. Grubb, S. Karandikar,
H. Liew, A. Magyar, H. Mao, A. Ou, N. Pemberton, P. Rigge,
C. Schmidt, J. Wright, J. Zhao, Y. S. Shao, K. Asanović, and
B. Nikolić, “Chipyard: Integrated design, simulation, and im-
plementation framework for custom socs,” IEEE Micro, vol. 40,
no. 4, pp. 10–21, 2020.

[12] J. L. Henning, “Spec cpu2006 benchmark descriptions,”
SIGARCH Comput. Archit. News, vol. 34, p. 1–17, sep 2006.

8



APPENDIX

Timing Results

Configuration MCF (user) BZIP2 Dryer (user) BZIP2 Program (user) ASTAR (user)
Null 8:33.60 20:20.86 10:17.17 28:49.85

Global 7:33.63 15:19.68 7:08.77 24:24.27
Local 7:44.73 16:39.85 7:14.92 24:36.94

GShare 7:05.77 14:56.32 6:37.67 21:00.78
Tournament 7:34.42 15:19.38 7:04.32 24:30.64

TAGE 7:04.29 14:56.42 6:38.94 20:26.17

Table II: Benchmark Timing Results

Speedup

Configuration MCF (user) BZIP2 Dryer (user) BZIP2 Program (user) ASTAR (user)
Null 100.00% 100.00% 100.00% 100.00%

Global 113.22% 132.75% 143.94% 118.14%
Local 110.52% 122.10% 141.90% 117.12%

GShare 120.63% 136.21% 155.20% 137.20%
Tournament 113.02% 132.79% 145.45% 117.63%

TAGE 121.05% 136.19% 154.70% 141.08%

Table III: Benchmark Timing Results

Synthesis

Predictor type Predictor Config # CLB LUTs # CLB Regs Power (W) WNS (ns) WHS (ns) # LUTs + Regs
Null BPD Max Meta Length = 0 87616 61583 2.326 0.427 0.011 149199

Global History Length = 0
Local History Length = 0
Local History Sets = 0

Global BPD Max Meta Length = 64 92870 64842 2.319 0.413 0.01 157712
Global History Length = 32
Local History Length = 0
Local History Sets = 0

Local BPD Max Meta Length = 64 93129 64881 2.332 0.229 0.01 158010
Global History Length = 0
Local History Length = 32
Local History Sets = 128

GShare BPD Max Meta Length = 45 93413 65132 2.336 0.203 0.01 158545
Global History Length = 16
Local History Length = 1
Local History Sets = 0

Tournament BPD Max Meta Length = 64 93483 65228 2.339 0.385 0.01 158711
Global History Length = 32
Local History Length = 32
Local History Sets = 128

TAGE BPD Max Meta Length = 120 99375 75435 2.364 0.427 0.01 174810
Global History Length = 64
Local History Length = 1
Local History Sets = 0

Table IV: Benchmark Timing Results

9


	Introduction
	Related Work
	Branch Predictor History
	Branch Predictor Motivation

	Main Idea
	Methodology
	Results
	Analysis
	Future Work
	Conclusion
	References

