
CPRE 581 Progress Report
Jake Hafele, Gregory Ling, Thomas Gaul

Department of Electrical and Computer Engineering
Iowa State University, Ames, IA 50014

I. IMPLEMENTATION PROGRESS

We have successfully cloned, built, and created
our own Git repository based off of the ChipYard
source code. We were able to install the tools and
dependencies on our CPRE 581 Linux VMs, which
led to running Verilator simulations to validate the
toolflow installed correctly. We began using the default
RocketChip configuration, and started to learn about
the project directory structure.

Once comfortable running Verilator simulations for
RISCV assembly programs and generating RTL for the
RocketChip, we explored how to generate Verilator
simulation results and RTL code for the Boomcore. We
learned that there were multiple sizes of the Boomcore,
which held multiple different numbers of issue widths
and physical registers. After this stage, we were ready
to investigate how to implement the generated BOOM
Core onto a real FPGA.

This led us to talk more with Jordan McGhee,
who has spent a considerable amount of time using
Chipyard and the BOOM core with a ZCU106 FPGA
development board. Jordan was able to share a zip
of his work and a git patch which would allow us to
generate RTL for the BOOM Core, which would be
able to reconfigure a ZCU106 directly, which we had
access to in Durham 310.

Over the weekend, we worked on running Linux
on a programmed ZCU106 with a Small Boom core
configuration. We were able to successfully echo
"Hello World", and attempted running a 2006 SPEC
benchmark, which crashed due to latency delays on the
loaded SD card. Another option we are considering is
using a smaller test program to ensure the test program
can run.

In the week before break, we began to generate RTL
and Vivado projects for each of our six branch pre-
dictors, including TAGE, Gshare, Tournament, Global,
Local, and Null predictor configurations. We utilized
the patch files provided by Jordan McGhee to generate

the Vivado projects for the ZCU106, and were able to
attain power, timing, and utilization results for each
of the six prediction schemes.

II. CHALLENGES

Throughout the first few weeks of working on the
project, we have encountered and addressed a handful
of challenges. The first challenge we ran into was
Chipyard’s size for use. We commonly run out of space
on our machine and have to delete items to keep
running things with it.

The next issue we ran into was the size of the chips
once they were done and the challenge of configuring
a project to the FPGAs available to us. Our initial
plan was to run on a ZED Board, but that was too
small to run a BOOM Core due to the gate count
and did not have a setup pre-made by Chipyard. An
alternative would be to run a Rocket Core on it which
it would have barely had the gate count for, but that
would have required configuring the ZED board and
making more branch predictor units than the BOOM
Core. After talking to Jordan, he said getting a board
configured for Chipyard was no small undertaking, and
he recommended not doing so. Another alternative
plan was to run simulations with Verilator or GEM5 and
just get the physical characteristics from Vivado. The
simulation options would take way too much time to
run any Benchmark to the point 5 hours into a simple
Quicksort run on Verilator yielded no completion. To
solve this problem, we got access to an FPGA that was
already configured with Chipyard and was big enough
to run the BOOM Core.

We ran into another issue where the provided SD
Card which had an instance of FireMarshal and Linux
had a broken kernel driver, which was to be put on the
FPGA after reconfigured. To fix this, we wiped the SD
card and copied over a fresh FireMarshal configuration
which was provided again by Jordan McGhee. The only
supported file system for FireMarshal is HFS+, which



is only accessible on Mac OS, meaning we had to use
Gregory’s laptop to reload the SD card.

Another issue we ran into involved using the Linux
computers in Coover. On one of our machines (Jake),
we did not have the gtc dependency installed, and
did not have sudo access. The constraint was that we
needed the Linux Coover instance to source Vivado,
so we were unable to use our 581 VM’s to create and
synthesize our design. To solve this, we used Gregory
and Thomas’s computers to generate Vivado reports
and bitstreams, and worked in parallel.

III. RESULTS

We learned that the Verilator simulations would be
unrealistically long, and improbable to simulate our
branch prediction performance metrics. Dr. Duwe also
stated that running a Boom Core on an FPGA could
be up to 100X faster.

We were able to successfully attain synthesis results
in Vivado, which included power, utilization, and
timing results for each of our 6 branch configurations.
Figure 1 represents the power utilization of the ZCU106
for the TAGE branch predictor configuration. It can be
seen that a majority of the power consumption comes
from dynamic switching power.

Figure 1: TAGE Predictor ZCU106 Power Consumption

We also were able to generate a utilization report
for each branch predictor, with a sample Utilization
mapping of the ZCU106 seen in Figure 2. It should
be noted that the size of the Small BOOM core would
be too large to load on other FPGA’s, and while

only around half of the ZCU106 is used, it is still
a marginal amount of utilization which would exceed
other supported boards such as the Arty100T FPGA
development board.

Figure 2: TAGE Predictor ZCU106 Utilization

Figure 3, 4, and 5 represent the synthesized results
of all six branch configurations for the Small BOOM
Core ZCU106 synthesis. As expected, the null predictor
scheme had the least amount of logic cells utilized.
Surprisngly, the global predictor had a lower power
consumption. The TAGE prediction scheme had a
much larger utilization count than most predictors,
specifically including many more registers utilized,
leading to a higher power consumption.

IV. CHANGES TO PROPOSAL

As suggested by Dr. Duwe, we decided to add a
TAGE branch predictor as one of our evaluations since
ChipYard includes TAGE as a default predictor for the
BOOM Core. We also decided to not implement a
Random predictor as this would lead to more time
developing the design in Chisel, versus evaluating our
results for more commonly used predictors, such as

2



Figure 3: Branch Prediction Utilization Results

Figure 4: Branch Prediction Utilization Results

Figure 5: Branch Prediction Utilization Results

TAGE, Gshare, and Tournament configurations. The
overall plan has stayed the same, with more clarity
on how to implement the Boom Core on an FPGA
by using the ZCU106 in Durham 310, utilizing Jordan
McGhee’s previous work. We still plan to implement the
same set of branch predictors in Chisel, and analyze

their power, area, and timing delays in synthesis using
Vivado. Alongside this, we still plan to evaluate per-
formance metrics using SPEC benchmarks by utilizing
FireMarshal and Linux on the BOOM Core to run our
results.

V. INDIVIDUAL CONTRIBUTIONS

A. Gregory

• Installed Chipyard on X Drive, tools build on the
linux lab computers. Vivado generated a bitstream
and provided implementation details including
utilization reports and a pretty picture of the FPGA
usage.

• Found installation instructions for FireMarshal,
used Jordan’s prebuilt firemarshal for the ZCU106
to boot the FPGA with out bitstream

• Cross compiled SPEC2006 bzip2 benchmark and
tried running it - it crashed horribly, but started
to run for 30 minutes.

B. Thomas

• Installed Chipyard repository and run sample
Verlator simulation

• Compiled Quicksort Algorithm test to RISC-V and
ran it on a Small BOOM with Verilator

• Started to learn Chisel and understand architec-
ture for processors within Chipyard.

• Helped brainstorm alternatives to resolve issues
of size and configurations

• Helped synthesize various branch predictor con-
figurations in Vivado

C. Jake

• Contacted Jordan McGhee for ZCU106 Chipyard
Interface

• Installed Chipyard repository and ran sample
Verilator simulations

• Researched more about Chisel and how to model
branch predictors in BOOM Core configs

• Gained key card access to Durham 310 for ZCU106
access

• Helped determine viable FPGA solutions for run-
ning BOOM Core

• Helped synthesize branch predictor configurations
in Vivado for ZCU106

3


	Implementation Progress
	Challenges
	Results
	Changes to proposal
	Individual Contributions
	Gregory
	Thomas
	Jake


