
CPRE 581 Project Proposal
Jake Hafele, Gregory Ling, Thomas Gaul

Department of Electrical and Computer Engineering
Iowa State University, Ames, IA 50014

I. ABSTRACT

Branch predictor designs have often sought for
higher prediction accuracy’s to achieve a higher IPC
value and better throughput for instruction flows. As
new designs and architectures are proposed, the main
center of focus in terms of improvement is prediction
accuracy, with little room to include variations in terms
of area, power, or timing constraints. By comparing
previously implemented predictor designs such as global,
tournament, 2-level, and GShare predictors using the
open-source tool ChipYard, we will be able to analyze
the varying constraints to determine an optimum
branch predictor based on varying area, power, and
timing constraints.

II. INTRODUCTION

From as early as 1981, researchers have investigated
the topic of branch prediction in the context of high
level architecture designs. J. E. Smith [1] proposed
multiple strategies including static predict if taken
designs and dynamic designs which maintain a table
of most recent branches or a 2-bit counter to predict
strongly taken or not taken. For each of these compared
designs, the main determination of branch predictor
performance was in terms of prediction accuracy,
where a higher prediction accuracy would lead to less
discarded instructions or latency on a branch mispre-
diction. In following works, such as Yeh and Patt’s [2]
two level predictor analysis, multiple varying prediction
schemes are compared between global, per-address,
and per-set schemes for each branch prediction level,
with again prediction accuracy as the only factor for
performance. While Yeh and Patt did only analyze
branch predictor tables with less than 512K bits, that
was the only consideration to hardware complexity.
For many of these papers proposing new architectures,
analyzing the impacts of branch predictors in terms of
area, power, or logical delay fall to the side in terms
of performance comparison.

In terms of complexity, branch predictors have
become increasingly advanced to satisfy the high
demand of issuing multiple instructions per cycle in
modern processors. In newer technology nodes, it
can be seen that as technology nodes decrease in
size, shortened clock cycles and larger wire delays will
become a much more prevalent issue [3]. As the clock
period decreases, this can lead to more architectural
units impacting the critical path and delay of the
design, which can lead to the hardware complexity
and delay impact of branch predictors becoming more
significant. It can also be seen that increasing the
delay of a branch predictor to improve prediction
accuracy is never a good trade off [4], leading to
the motivation that the comparison of delay between
modern branch predictor implementations should be
further investigated. While the referenced paper does
use Gshare as a baseline prediction model, three new
architectures are proposed, instead of following up
work on previously implemented prediction designs.

When considering options for improvement for
branch prediction or many other areas of improvement
throughout a processor, bigger correlates to at least
a marginal improvement [5]. Thus, when making the
optimal theorized processor, many sections would be of
infinite size. However, when it comes to implementing
a design in hardware, certain decisions need to be
made due to hardware limitations. Branch predictors
with a BTB that consists of a size of a small cache can
take up to 10% of CPU power [6]. Now, different branch
prediction strategies have varying power consump-
tion and size requirements. Each of these prediction
strategies has a different size where their benefits
per size increase fall off. With the limited power
capabilities of a processor, power to improvement must
be considered as increasing the power consumption of
different segments of the processor yields different
levels of improvement. In the work we explored,
they investigate the miss rate and performance of



many branch prediction algorithms, but rarely do they
compare the power cost to performance and not across
multiple approaches.

Similar to power, the area required by different
strategies differs and increases as the size of each
strategy increases [7]. With the decline in Moore’s law,
relying on being able to pack more into the same
area is no longer an option either, so architecture
designers need to be wise about how they spend
their area to maximize their performance benefits.
When looking at other area-intensive performance
improvements, it may be found that the area is better
spent increasing cache sizes or instruction window
size [5]. Like with power, the concern of area required
by branch prediction strategies is not investigated
by many papers but is a crucial consideration when
implementing these in a design.

III. RELATED WORK

To recontextualize branch predictors in terms of
area, power, and timing constraints, we must analyze
previously published branch predictor designs, as well
as analyzing other existing works that consider other
factors of performance besides just prediction accuracy.
By analyzing previous prediction schemes, we will
get a better idea of how to model them in ChipYard,
and gain further knowledge in how to present our
results. By using more modern works related to other
constraints such as area, power, and delay, we will
also learn more about what is done and how we can
recontextualize prediction accuracy between each of
the three additional factors for performance.

A. Branch Predictor History

One of the earliest works in branch prediction was
presented by J. E. Smith [1], which presented multiple
static and dynamic branch prediction schemes within
the context of an improved prediction accuracy. The
complexity of these designs varied between static
predictions which would always assume branch taken,
or more complex schemes where a branch would
prediction would be determined on the previous
result of the branch, based on the program counter
address for the instruction memory. While each of
these models were driven based on their prediction
accuracy, multiple different FORTRAN benchmarks
were used, which shows that it is important to run
test programs with varying instruction sets, to test

the full capabilities of each branch prediction scheme.
Alongside this, multiple table sizes were considered in
terms of size for dynamic branch prediction history
results, which could benefit out own ChipYard results.

As authors sought out higher prediction accuracy’s,
more works were published, such as Yeh and Patt’s [2]
comparison of dynamic predictors which used multiple
variations of two-level schemes. In this paper, three
types of predictor schemes were applied, including
using a history of the last N branches used (Global),
the last N branches of the same branch PC address
(per-address), or the last N branches in the same set
(per-set). Each of these variations were applied for both
the first and second level of the dynamic predictors,
leading to 9 total variations to analyze for prediction
accuracy, for multiple SPEC benchmarks. One useful
piece from this paper that could be examined is
the comparison of hardware cost for each of the
9 configurations, based on the number of branch
history table entries and number of branch sets. This
work also modeled many varying branch prediction
schemes based on varying branch history lengths, and
was cut off after 512K bits, showing that some size
considerations were used when comparing prediction
accuracy.

Around a similar time that the above work was
published, S. McFarling [8] presented a novel idea of a
tournament predictor. The core idea of this design is to
use both a local and global branch prediction scheme
for the second level predictor, and select between
which predictor to use with a 2-bit prediction counter.
A 2-bit counter would act as a saturated counter to
select the best predictor to use, either the global or
local predictor, based on the performance history of
each predictor, which would drive the choice counter
to either increment or decrement. This work presents
its results in terms of branch accuracy, and models
multiple configurations of tournament predictors in
the same plot, including bimodal, bimodal/Gshare,
and local/gshare combinations. Overall, a prediction
accuracy improvement improved to 98.1%, from the
previously known best prediction scheme of 97.1%.
This work could be re-contextualized in terms of area,
power, and delay constraints to determine if the added
1% in accuracy improvement can be justified in a
real-world application.

2



B. Branch Predictor Motivation

The overall inspiration for our project is similar
to that explored by the paper "Branch Prediction,
Instruction-Window Size, and Cache Size: Performance
Trade-offs and Simulation Techniques" [5]. In the
paper, the authors look at the performance benefit
of changing the sizes of their branch prediction unit,
instruction window size, and cache size due to the die
constraints of a design. In it, they specifically explore
a hybrid branch predictor with a global sector, a GAg
predictor, and a PAg predictor. In the paper, they find
that incorrect branch prediction always ends up being
a major bottleneck and tends to be an area where
resources are required.

One of the major aspects of our project goal is
investigating the delays associated with the different
predictor designs, and this idea was explored by "The
Impact of Delay on the Design of Branch Predictors"
[4]. In their paper, they look at the delays caused by
increasing branch predictor size because, up to the
writing of their paper, the only variable explored was
the predictor’s accuracy. The paper specifically looks
at the gshare predictor and a hybrid predictor with
varying sizes. They find that if they just optimize of
accuracy of prediction it has a negative effect overall
due to the heavy delays incurred by their size. They
found their hybrid predictor functioned well until its
delay reached a full cycle, and then everything fell
apart. Due to their findings, they suggest all papers
investigating branch prediction should also report
delays due to the implications they found.

The next major aspects we want to explore in our
project is power and area. Power is discussed well
in the paper "The Impact of Delay on the Design of
Branch Predictors" [6]. They explored the trade-off
between the power and accuracy of four hybrid pre-
dictors and found that the application is an important
consideration due to the varying power consumption.
Another paper "Low Power/Area Branch Prediction
Using Complementary Branch Predictors" explores
power in addition to area, another aspect we want
to explore [7]. They cover all topics we want to explore
and as a result, propose a complementary branch
predictor. It is a delay, area, and power-efficient branch
prediction algorithm that only completes complicated
predictions for branches that are typically challenging
for the processor to guess which yields good prediction
accuracy without as much of the costs.

Finally in regard to our interest in exploring adding
a hint instruction to “prime” the branch predictor we
found the paper Branch Penalty Reduction on IBM
Cell SPUs via Software Branch Hinting" [9]. This paper
describes branch hint instructions attempted in an
IBM processor. Some limitations they ran into were a
minimum distance between the hint instructions and
the real branch instruction which required them to
use NOPs to fill the gap, and the need to restructure
nested loops to allow for enough space to fit the branch
hint instructions before the actual branches. Even with
these limitations, they appear to have gotten some
improvement from this design.

IV. SPECIFY IDEAS

The common trend of modern branch predictors is
that to achieve a higher prediction accuracy, designs
have become more complex. Due to this, the hard-
ware cost will increase, which could lead to a larger
area, power, or delay demand. By analyzing different
branch predictors of varying levels of complexity, we
will gain further insight in to where certain branch
predictors could be used in modern applications, such
as desktops, mobile devices, or warehouse scale servers.
Based on the constraints for each of these applications,
different area, power, or delay demands will need to
be met.

We are planning to expand on previous branch
prediction schemes and compare prediction accuracy
within the context of area, power, and timing con-
straints. By using a similar set of benchmarks we
will be able to better compare prediction schemes
such as a global, local, tournament, and Gshare
predictors. As referenced above, many previous works
only identify branch predictor performance in terms of
prediction accuracy, and possibly hardware cost. Our
goal is to re-evaluate prediction accuracy with a similar
set of benchmarks for multiple prediction schemes,
and determine if there are any common trends or
benefits for using prediction schemes with low power
consumption, size, and delay constraints.

ChipYard allows us to generate a base RISC-V CPU
core ready for RTL synthesis. We can then add various
branch prediction algorithms to the base core and
synthesize them to determine power and area metrics,
then run SPEC2006 benchmarks on the different soft
cores produced. Potential branch predictors we are
considering include:

3



• Null predictor
• Random predictor
• N-bit local predictor
• Global predictor
• Gshare
• Tournament

V. INTENDED RESULTS

A. Expected Plots

We intend to evaluate the performance of different
branch predictor strategies in light of different bench-
marks, and tracking the corresponding area and power
usage statistics for each. One plot will show a bar
graph of power usage statistics reported in synthesis
for either Xilinx Vivado or Altera Quartus Prime for
all branch predictor implementations tested, and a
second plot will show the same for area usage. A third
plot will show performance across various benchmarks
from the SPEC2006 suite in either cycles or CPI for
each branch predictor cross each benchmark.

B. Producing Plots

We will produce the plots using matplotlib in Python
using data generated either via RTL synthesis in Xilinx
Vivado or Altera Quartus Prime for area and power met-
rics, or via RTL implementation on an FPGA for cycle
counting. We will use ChipYard to create a base RISC-
V CPU implementation, then add different branch
predictor implementations designed using the Chisel
HDL language. These resulting RTL processors can run
on an FPGA, and either run SPEC2006 benchmarks
bare-metal (if feasible), and as an alternative backup
option, boot a minimal linux distribution on the FPGA,
and run the SPEC2006 benchmarks within Linux. Bare-
metal will give more specific results in terms of cycle
counts, but may not be feasible with the SPEC2006
benchmarks.

C. Designed Infrastructure

Our designed infrastructure required to test our
branch predictors consist of the FPGA, potentially a
small linux distribution to run on the soft core, and a
computer to communicate with and record data from
the FPGA.

REFERENCES

[1] J. E. Smith, “A study of branch prediction strategies,” in Proceed-
ings of the 8th Annual Symposium on Computer Architecture,
ISCA ’81, (Washington, DC, USA), p. 135–148, IEEE Computer
Society Press, 1981.

[2] T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic branch
predictors that use two levels of branch history,” in Proceedings
of the 20th Annual International Symposium on Computer Archi-
tecture, ISCA ’93, (New York, NY, USA), p. 257–266, Association
for Computing Machinery, 1993.

[3] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger, “Clock
rate versus ipc: the end of the road for conventional microar-
chitectures,” in Proceedings of 27th International Symposium
on Computer Architecture (IEEE Cat. No.RS00201), pp. 248–259,
2000.

[4] D. Jimenez, S. Keckler, and C. Lin, “The impact of delay on the de-
sign of branch predictors,” in Proceedings 33rd Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO-33 2000,
pp. 67–76, 2000.

[5] K. Skadron, P. Ahuja, M. Martonosi, and D. Clark, “Branch
prediction, instruction-window size, and cache size: performance
trade-offs and simulation techniques,” IEEE Transactions on
Computers, vol. 48, no. 11, pp. 1260–1281, 1999.

[6] D. Parikh, K. Skadron, Y. Zhang, M. Barcella, and M. Stan,
“Power issues related to branch prediction,” in Proceedings
Eighth International Symposium on High Performance Computer
Architecture, pp. 233–244, 2002.

[7] R. Sendag, J. J. Yi, P.-f. Chuang, and D. J. Lilja, “Low power/area
branch prediction using complementary branch predictors,” in
2008 IEEE International Symposium on Parallel and Distributed
Processing, pp. 1–12, 2008.

[8] S. McFarling, “Combining branch predictors,” Tech. Rep. Tech-
nical Note 36, Western Research Laboratory, June 1993.

[9] J. Lu, Y. Kim, A. Shrivastava, and C. Huang, “Branch penalty
reduction on ibm cell spus via software branch hinting,” in
2011 Proceedings of the Ninth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pp. 355–364, 2011.

4


	Abstract
	Introduction
	Related Work
	Branch Predictor History
	Branch Predictor Motivation

	Specify Ideas
	Intended Results
	Expected Plots
	Producing Plots
	Designed Infrastructure

	References

