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I. INTRODUCTION

The goal of our project was to design and implement
multiple fixed point integer MAC units for a fabricated
ASIC design. We utilized existing code that has been
verified and synthesized from labs 3 and 4, including
our integer quantized MAC unit and variable MAC unit.
We used these simple designs as a baseline since they
have been tested and proven in existing labs, to ensure
we can hit the tapeout deadline for the target digital
ASIC which is November 11, 2024.

Putting our MAC designs within this chip will allow
ISU’s ASIC design club Chip Forge the opportunity to
test a fresh and novel design that relates to the CPRE
587 coursework. This would provide an opportunity for
lab partner Thomas Gaul, other potential students, or
Chip Forge members to test a MAC unit or multiplier
within the digital ASIC design, and integrate it with
the on chip 3 stage open source RISC-V core.

As a personal goal, this project was a good push to
capitalize on personal experience of both members
related to Chip Forge. Jake Hafele has spent time
working with the same process as both a senior
design member and a graduate researcher. Utilizing this
background helped enable the club to have another
design to validate next semester, as well as providing
a way for us to save time by knowing the design flow.
Thomas Gaul has the opportunity to write C firmware
and validate this design in hand next semester, which
is a novel opportunity before he graduates and starts
his industry career in digital ASIC verification.

The ASIC design process is based on utilizing all
open-source tools, including digital verification, syn-
thesis, and place and route operations. The company
leading the process is called eFabless, which utilizes
the SkyWater 130nm open-source PDK to fabricate
designs. Multiple previous senior design teams have
designed projects under the sponsored OpenMPW
shuttle program. Chip Forge has received a grant for

a grant from the National Science Foundation for six
independent tape-outs over a 3-semester term.

II. RELATED WORK

Related work for this project falls into two subsec-
tions. The first is prior work exploring MAC unit designs
or papers regarding the open-source tools we make
use of in this project.

A. Related Work on ASIC Design

The following paper [1] compares multiple open
source ASIC design flows including RTL simulation,
synthesis, gate level simulation, place and route, timing
analysis, and floor planning. This gives a perspective
of the span of potential open source tools to use in the
digital design flow. Notably eFabless supports using
OpenLane, which uses iverilog, Yosys, and Netgen, to
name a few relevant tools.

B. Related Work on MACs

The first paper we looked at was the Design and
Performance Analysis of Multiply-Accumulate (MAC)
Unit [2] the paper explores a handful of different
multiply hardware designs in the scope of a MAC
unit. It implements an Array Multiplier, a Ripple
Carry Array Multiplier with Row Bypassing Technique,
DADDA Multiplier, and a Wallace Tree Multiplier. These
multiplier designs are interesting compared to our
Verilog and will flatten into something similar. If
the tool does not allow for synthesizing the multiply
operator, we will have to implement a design similar
to these in hardware.

The next paper we explored is the Design of High-
Performance 64-bit MAC unit [3]. This paper employs a
different technique for making up their multiplier and
uses a modified Wallace multiplier with a carry-save
adder. They go into design points and results that are
similar to what we want to see on our MAC design(s).

Finally, in this project, we want to have the option
to pack multiple data pieces into one 32-bit word that



is passed to the Mac, and then the MAC is calculated
for all the pieces. We found a patent that does just
this with two 16 bit numbers [4]. We want to expand
on this to do 4 8-bit, 8 4-bit, and 16 2-bit.

A novel approach is to use a different data type for
MAC units, such as posit [5]. Posit can achieve higher
levels of accuracy with the same amount of bits as
fp32, or similar levels of accuracy with lets bits. This
format includes a single sign bit, an exponent and
fraction like fp32, but includes a new regime field. The
regime field can represent one or multiple bits, and is
a run of either multiple 0’s or 1’s, and terminated with
the opposite value. This means the values can scale to
larger proportions with lower amounts of bits, making
them beneficial for DNN applications.

C. Quantization

A large motivation for our design is to use variable
precision multiply and accumulate blocks to support
multiple integer precision levels. One paper utilizes
a Minimum Mean Squared Error problem to handle
weight and activation input quantization without a
full retraining of the model [6]. This is applied to 4
bit integer quantization levels, which is one of the
quantization levels that we are implementing in our
variable MAC design. The target designs are low power
accelerators for pretrained models, in which the low
power accelerators will benefit from the low precision
computations by utilizing energy savings.

Like the last paper, another related work also focuses
on utilizing pretrained fp32 models and converting
them to fixed point quantized integers, to reduce the
amount of energy and latency overheads required with
retraining a model in integer form [7]. Mathematical
algorithms are derived to determine the most optimal
number of fixed point quantized bits per layer based
on a logarithmic equation. These optimizations are
performed for many popular datasets, including CIFAR-
10 and ImageNet.

Another paper covers training quantized neural
networks with as low as 1 bit precision weight and
inputs at run time [8]. Similar datasets to before were
used, including MNIST, CIFAR-10, and ImageNet. Due
to the reduced quantization levels of single bits, most
arithmetic operations during training are reduced to
bitwise operations. While our implementation of the
variable mac unit has no bitwise operations, the lowest

level of precision is an int2 multiply and accumulate,
which is near in terms of size.

Additional frameworks have been proposed which
utilize the speedup of quantized networks, one of
which being ReLeQ [9]. This framework utilizes the
proximal policy optimization to determine how to
quantize hyper parameters. Like other examples, an
already trained model is originally used as a baseline,
and will be automatically analyzed to determine the
most optimal number of bits with a slight loss in
accuracy. Within the context of our variable mac unit,
we would assume a pre trained model with fixed point
values would be used, or converted from fp32 before
being inserted into our digital ASIC design.

D. The Iris Dataset

A final aspect we added onto this project was
running an actual DNN model on our hardware design.
A common toy dataset used in many machine learning
explication and tutorials is the Iris dataset first [10].
This data set has 4 data points associated with different
dimensions of Iris flower petals and an associated
specific iris breed out of 3. This dataset consists of 150
data points and worked out well to make a model we
could fit on our device given the memory constraints.

Another piece related to this described a model
that had two hidden layers with 50 neurons and 30
neurons and explored activation functions with the Iris
dataset. Unfortunately, we could not use their size due
to the memory constraints on the processor but we did
use their design as a starting point [11]. Additionally,
they showed the performance of different activation
functions with Relu on all layers, performing as one of
the best options. Even though it was not the absolute
best we still used it as it was the easiest nonlinear one
to do on our hardware.

III. DESIGN

A. Tools

There are multiple required tools for the digital ASIC
design flow as supported by eFabless, that are needed
for end to end development and verification of a digital
ASIC design. We are limited to the toolflow of eFabless,
and have to conform to the performance of the open
source tools and repository that is given. This can
provide challenges, as the open source tools are not
as well supported as proprietary ones.

Included tools in the ASIC design flow:
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• Iverilog (Digital Verification)
• Yosys (Synthesis)
• OpenROAD (Place and Route, DRC, LVS, STA, etc)
• GTKWave
• KLayout

There are multiple resources we can utilize that
have been created as part of ChipForge, the new ASIC
design club at Iowa State University. As part of Jake
Hafele and Gregory Ling’s graduate research, multiple
toolflows and tutorials have been created to assist in
designing, verifying, and validating digital ASIC designs.
This gives us much more confidence that we will be
able to produce a tapeout ready design in 3 weeks.

Internal tools from ChipForge:

• Supported toolchain on ISU Linux machines
• Artix-7 FPGA Dev Board
• Documentation for running tools

B. Variable Precision MAC

The variable precision MAC will multiply together
both integer activation inputs and weights together
and write them to a shared accumulation register. This
design is synchronous to the positive edge of a clock.
A synchronous active high reset exists to clear the
accumulation register when a new MAC operation
should start. A synchronous active high enable also
exists to control when two data inputs should write and
sum with the existing contents of the accumulation
register.

These 32 bit inputs can be quantized at 32/16/8/4/2
bit levels, and data can be packed to ensure for more
performant throughput between the two 32 bit ports.
to pack data at smaller quantized levels, the data and
weights to be multiplied together should be in the
same bit positions across each port.

For example, with a 16 bit quantization:
Data

[31:16] Data_1
[15:0] Data_0

Weight
[31:16] Weight_1
[15:0] Weight_0

MAC = Data_1 * Weight_1 +
Data_0 * Weight_0

The entire interface to the MAC unit is done over
the 128 logic analyzer pins that are connected directly

between the management core and digital user design
area. The following ports are mapped as input/output
on the logic analyzer bus:

LA Outputs:
[127:96] o_ACCUMULATE: Output of accumulate
[95:0]: NOT USED, tie low

LA Inputs:
[127:69] NOT USED
[68] I_RST: Synchronous high reset
[67] I_EN: Synchronous enable
[66:64] i_SEL: Quantization level select
[63:32] I_DATA: Activation inputs
[31:0] I_WEIGHT: Weight inputs

System inputs
i_CLK: Clock from wishbone bus

i_SEL Quantization Levels:
000: 32 bit
001: 16 bit
010: 8 bit
011: 4 bit
100: 2 bit

The input enable control will write a MAC accumu-
late when the control signal transitions from a 0 to
1, on the positive edge of the signal. This control bit
is stored in two DFFs, to guarantee only one MAC
is performed per operation from the RISC-V core.
This is required since the clock cycles in the digital
ASIC design are much faster than the RISCV core,
which would lead to a copious amount of MACs per 1
intended operation.

A snippet of the RTL code of the 32 bit integer
MAC operations is given in Figure 1. The open source
synthesis tool Yosys was able to infer how to synthesize
a multiplier and adder block based on the

* and +

operators in the Verilog language. Additionally, there
were cells to support this synthesized list in the open
source SkyWater 130nm PDK, enabling passing place
and route and implementation in the final design.

C. Unit Level Testing

The unit-level test was designed to fully automate
tests with random inputs to try to reach edge cases

3



Figure 1: Verilog Snippet

and be able to reach testing amounts that we could
not otherwise do manually. The unit test file is set
up with functions for MACing two 32-bit numbers,
four 16-bit numbers, eight 8-bit numbers, sixteen 4-bit
numbers, and thirty-two 2-bit numbers. The result of
each MAC is against an internal calculation of the
expected value. The unit test is set up to feed random
numbers up to 1000, 1000, 255, 15, and 3, respectively.
It does this on a random amount of times up to 1000
times, being checked for correctness all the time. It
is set to run this test on each MAC size, and then
finally, there is a test that randomly selects from each
version each MAC and resets the MAC unit at random
to ensure that a combination of MAC occurs to catch
odd behavior. The waveforms are shown in Figure 8. In
addition to testing our design, it hopefully can function
as a template for future Chip Forge members to use.
The design passed these tests with both RTL test and
gate-level simulations.

D. Hardening

Hardening is the term used by eFabless which
envelops synthesis, placement, routing, and DRC/LVS
checks, all in one package of steps. It was critical
that we guarantee our design can pass through all of
these checks before handing our tested Verilog MAC
module to senior design, to ensure that they would
have no issues integrating our project with the rest
of the design. Hardening of each module is defined
by a config .json file. We hardened our mac module
individually to generate a synthesized netlist that could
be used for gate level testing with the same derived
testbench as our RTL sims. To verify our design works
as expected in the integrated user framework, we also
hardened our design within the user project wrapper
module.

Our target design space was 500 by 500 um of design
area, with a utilization of 0.55. There is lots of area left
in the tapeout chip for projects, so space is a nonissue
as of now. The key concern is verifying that the Verilog
will synthesize with the use of the multiply and add
operators in Verilog.

E. System Level Testing

Once we had the design hooked up to the RISC V
core, we wrote a short piece of C code that does one
of each MAC one after another, as shown in Figure 12.
Going over the math, all the pieces work out properly
it is interesting to see how many clock cycles go into
MACing two items.

F. Running on FPGA

To start off the testing on the FPGA, we wrote up an
interface for every size of MAC with the hardware and
an equivalent software MAC implementation function
set. With these functions, we wrote the equivalent to
the simulation above in the System level testing. As
shown in Figure 2 the outputs match between software
and hardware as well as the output in Figure 12. This
did a basic test of all MAC types. After additional tests
verifying the functionality of the design. We started
to do a timing analysis of our design vs the software
design. We ran into the problem there that multiply
was being handled in compile time for the program.
To circumvent it we input the variables to be MACed
via UART. As such, they varied from 0 to 255 and were
inserted randomly by us hitting them into the keyboard
at random. This brought us to the next problem
the RISC-V core does not have support to multiply
instructions. This did not come up previously as it was
being completed at compile time. To get any form of
comparison we wrote a software implementation for
MACs that does not use any multiply instructions. We
output the clock time from each MAC and verified it
outputs the same between software and hardware as
shown in Figure 3. We ran the timing test on various
MAC counts from 0 to 100 as shown in Figure 4.
We can see in the graph there is a very significant
speed-up between software to hardware. This is due
to the software implementation taking many clock
cycles to do a MAC, whereas our hardware does it
in 1 in addition to the cycles to set it in memory to
go to the hardware. It can be noted that the FPGA
does not run on a linear time with the number of
MACs the hardware completes, unlike the software,
which is quite linear. Upon some investigation into
the generated assembly and comparison between the
lower counts of MACs and the higher counts of MACs,
there is a difference in how the loops are generated,
causing an increase in runtime. Additionally, we did
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further evaluation of our design by making a toy model
with the Iris dataset [10].

Figure 2: Simple test outputs

Figure 3: Timing test output

Figure 4: Timing test comparison

G. Tapeout Integration

Our design was shared with the senior design team
sddec24-12 which was responsible for completing the
first paid tapeout for ChipForge. We shared the same
submitted design repository to the ChipForge ISU
Gitlab group so they had access to all listed documents.
Primarily they needed the mac.sv source file, so it could
be instantiated within their user frame.

H. Iris Dataset

To fully realize our hardware MAC accelerator, we
wanted to run a true model on it. With limited memory
constraints, we chose to do the Iris model, which has
four variables for the flowers and an associated Iris
species out of three. It has 150 elements, 50 for each
flower type, which we split 120 for training and 30 for
testing. We trained a dataset with 4 dense layers of
sizes 4x10, 10x10, 10x5, and 5x3 and achieved with Relu
activation functions as shown in Figure 5. We trained
the model with a batch size of 1 and 100 epochs as
we saw the best results with these parameters and
got a test dataset accuracy of 96 percent, although I

suspect there is overfitting going on given the small
amount of data we are working with. To run this on our
hardware, we shifted all the values to the left 16 bits
and dropped the remaining fraction to make it Q16.16
datatype to avoid losing precision but still function
without and floating point arithmetic. With this we
wrote a function to complete dense layers in C to run
on the FPGA with the 32-bit MAC function written
previously to test our design. Additionally, we did not
write a Softmax function as that would not have been
efficient given the hardware, but we could still select
the most likely class from the maximum. With this
complete, we tested several pieces of data to ensure
the code correctly identified the flowers.

Figure 5: Iris model design in Netron

IV. FINAL STATUS

A. Unit Level Testing

Figure 6 below shows the passing simulation results
of our RTL unit test for the mac module.
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Figure 6: Unit Test RTL Results

Figure 7 below shows the passing simulation results
of our GL unit test for the mac module.

Figure 7: Unit Test GL Results

Figure 8 demonstrates a sample waveform sim
for testing randomized data and weight inputs for
variable precision levels of our mac module. The unit
testbench automatically determines what the expected
output should be, and compares it to verify functional
correctness with randomized input stimulus.

B. Hardening

Figure 9 showcases a code snippet of the synthesized
netlist that we generated through the hardening pro-
cess. This was important as it was required to run gate
level simulations and verify our synthesized netlist,
which would be placed in the ASIC tapeout design,
had the same functionality as the RTL simulations.

Figure 10 represents the physical design of our
MAC unit after going through synthesis and place and
route operations. The sample hardening was done to
generate a synthesized gate level netlist to simulate, as
well as verify our design would pass through hardening
without any issues.

We were able to successfully pass our design instan-
tiated within the digital user design area all the way
through precheck, as shown in Figure 11. With this
complete, we were ready to integrate out design into
the Senior Design Tapeout framework.

C. System Level Testing

Figure 12 demonstrates a sample waveform sim for
a piece of C code that sets up the processor for using
the MAC hardware and does one MAC for each type
32-bit, 16-bit etc. Each value is added to the previous
one.

D. FPGA

We were able to verify our hardware on an FPGA and
do timing analysis with a software-exclusive design.

With the working hardware, we were then able to
extend our hardware to work on a functioning DNN
model for the Iris dataset.

E. Tapeout

After our design was integrated into a caravel user
project design and passes all functional tests, we
delivered it to ChipForge to be integrated into their Fall
2024 tapeout. The senior design team was successful
in integrating our MAC design into their framework,
and were able to successfully pass connectivity checks
to ensure our design was still functional after being
integrated into a new user design area. The design was
synthesized again and passed both remote precheck
and tapeout checks, guaranteeing a passing design
to eFabless. Currently the tapeout design has been
submitted and will be sent off to be fabricated and
packaged soon. We are expecting to receive the ASIC
in Spring 2024, which Thomas Gaul will be able to
validate as part of ChipForge’s bring-up process.

V. DOCUMENTATION

The main documentation for how to interface with
the MAC design as well as how to run all of the tools
for each stage of the design flow is located in the root
README.md within our repository deliverable.

Within our submission, the following key paths are
important:

• Verilog RTL:

/verilog/rtl/mac.v

• Unit Tests:

/verilog/dv/mac_test1

• Hardening:

/openlane/mac

• Synthesized netlist:

/verilog/gl/mac.v

VI. CHALLENGES

One design challenge we had was how to handle the
enable control. Since the clock in the RISCV core was
much slower than the digital design area, we would
not be able to assert and deassert the enable control
input on the same clock edges as our digital design. To
solve this, we created two DFFs to store the two most
recent values of the input enable control, which were
sampled on the positive edge of the digital domain
clock. When the most recent enable register was 1,
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Figure 8: RTL Unit Test Waveforms

Figure 9: GL Netlist

and the past enable register is 0, then a rising edge is
detected and the accumulated value is written to the
accumulation register. This did not show up in our unit
tests, but was caught in our C code testing. Without

Figure 10: Hardened MAC Module

Figure 11: Passing Precheck result

change, it would have made our design nonfunctional
after tapeout.

Our schedule was rather accelerated due to the
tapeout for the chip being on November 11th. We
had to skip starting lab 6 to guarantee our chip would
make it on the tapeout, which expedited the design and
testing process. Figure 13 shows our planned schedule,
which we ended up meeting as expected.
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Figure 12: RTL C test Waveforms

Figure 13: Proposed Schedule
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