
Hardware Implementation of RMS Scheduler
Jake Hafele, Thomas Gaul

jmhafele@iastate.edu, tvgaul@iastate.edu
CPRE 558 Section 1

Department of Electrical and Computer Engineering
Iowa State University, Ames, IA 50014

ABSTRACT

This project addresses the problem of software
implementations of task schedulers, which can require
large overhead in resources such as memory, energy, and
context switching for embedded systems applications.
Alternatively, by utilizing a hardware implementation,
we could utilize either an FPGA or ASIC to implement a
task scheduler, which could lead to potential benefits for
resource usage for memory, energy, or context switching.
For our design, we have modeled a real-time RMS task
scheduler on an FPGA development board with the goal
of comparing the synthesis results and speed of context
switching for high speed and low energy applications
with embedded systems. To evaluate our design, we
will analyze functional wave forms and physical results
on a reconfigured FPGA. We will also compare the
performance of the hardware implementation with a
generalized software scheduler model with an RMS
implementation to determine where further work could
be done.

I. INTRODUCTION

Our idea of hardware-based scheduling is novel
within the scope of course content in CPRE 558, but
it has been explored in many different applications by
researchers. The idea was initially suggested in 1995
in the paper "Hardware implementation of a real-time
operating system" [1]. From there, it was researched
in several ways for the last 28 years. We explore a
handful of these previous works as inspirations for our
implementation of hardware-based scheduling.

The first paper in 1995 proposed implementing
major parts of a real-time operating system in hardware
and comparing it to its hardware counterparts. They
implemented their primary hardware kernel on an
FPGA and found that it performed overwhelmingly
well. It performed many times faster than its software

counterpart, and the kernel took up less than half the
space. The only cost of this concept is the hardware
development costs. The next paper we looked at
explored the pros and cons of three setups: software,
software with a coprocessor, and hardware-software [2].
They found that the hardware outperforms either of
the software-exclusive versions and takes up less area
and power than a coprocessor solution. Once again,
the only issue with this solution is implementation
complexity.

Some of the more modern papers look into some
other aspects of application outside of overall perfor-
mance. In the paper "A Hardware Scheduler Based
on Task Queues for FPGA-Based Embedded Real-Time
Systems," they suggest the possibility of creating a
scheduling accelerator that could run on an FPGA
in addition to a processor-implemented on an FPGA,
which could outperform a hardcore processor due to
the advantages of a hardware scheduler [3]. In addition,
the paper explores the option of more complicated
algorithms that don’t take bandwidth due to the hard-
ware accelerator. The next paper we looked at, "A High-
Performance Real-Time Hardware Scheduler" looked
into algorithms for scheduling a multicore system,
which is typically processor-heavy for optimization
[4]. Like the early papers, the authors found that these
hardware options outperformed software options in
every category except implementation complexity.

For our project, we will explore implementing our
own hardware implementation of an RMS scheduler
to compare the performance and trade offs versus
a traditional software scheduler for a low resource
embedded systems application.

II. PROJECT OBJECTIVES AND SCOPE

One major downside to software based schedulers
is the large overhead required with implementing



schedulers. For many embedded systems application,
this overhead can include both the added context
switching resources for switching tasks, but also the
resources lost in implementing an Operating System
versus using a bare metal application for low cost
devices. This could lead to a desire for a hardware
scheduler implementation, which could be used on
SoC applications in parallel with a bare metal micro
controller. Our goal is to implement a basic hardware
scheduler with an RMS implementation to show the
feasibility and benefit versus a traditional software
scheduler with RMS.

A. System Model

Our project and design are centered around embed-
ded systems applications which have limited amounts
of resources, memory, or power that can be utilized
for the target system. To implement a traditional soft-
ware scheduler, there may be additional overhead for
including an operating system to use a RMS scheduler,
which on its own could lead to more resource usage
in memory, energy, or context switching.

B. Problem Statement

The major problem we our seeking to solve is the
barrier to implementing task schedulers, and how
utilizing hardware based implementations on either an
FPGA or ASIC could help reduce the energy utilized or
time spent context switching with traditional software
schedulers.

C. Objectives and Scope

Overall, the goal of this project will be to apply
what we have learned about RMS real-time system
schedulers and analyze the potential benefits of im-
plementing a real-time hardware scheduler on an
FPGA platform by utilizing a hardware approach. With
this, we can compare the performance tradeoffs and
benefits versus a traditional software scheduler in the
context of an embedded system application.

Objectives

• Model periodic RMS task sets as learned in class
• Model RMS schedule on FPGA hardware
• Multiple queues of tasks based on priority
• Compile/Simulate RTL related to real-time system

topics
• Synthesize RTL for FPGA configuration for real-

time operation

• Preempt task sets based on periodic priority per
RMS

• Save register states in between tasks when pre-
empted

• Implement counter based on clock to monitor
RMS ready times

III. SOLUTION METHODOLOGY / APPROACH

To compare the hardware and software schedulers,
we will implement a sample RMS schedule on an
FPGA with a hardware architecture to mimic context
switching between multiple periodic tasks. This will
help address our problem of high overhead in software
applications by showcasing the feasibility of a RMS
hardware scheduler, and demonstrate improvements
in energy consumption and context switching relative
to the software counterpart.

A. Algorithms / Protocols / Architectures

An RMS Schedule consists only of periodic tasks,
which makes the schedule and task set static. It
is assumed for our RMS schedule that the relative
deadline of the schedule is the same as the period
(Pi) of each task, meaning that each task is due to
complete by the time the task refreshes at the end
of its respective period. Each task can vary in its
computation time (Ci), which will require N time units
to complete each task. The priority of the tasks will
be determined statically, based on the smallest period
of the active tasks. A task will switch from active to
complete after it has been active for as many time
units as required per the computation time. Once a
periodic task refreshes, it can preempt a lower priority
task (with larger period).

To ensure that our hardware application of an RMS
schedule would meet all of the above criteria, we
designed the task set as below in Table I. This task set
includes five different tasks, with two different period
and computation times. We designed our task set to
ensure that there would be full utilization to test the
limits of our hardware scheduler, and also to ensure
that preemption would occur with tasks T0 and T1
after time unit 4. The sample schedule for the given
task set parameters can be seen in Figure 1.

B. Illustrative Example

The referenced task set parameters will be inserted
into our Hardware design, which will be synthesized
"at compile time" for the static RMS schedule, to

2



Task Period (Pi) Computation
Time (Ci)

T0 4 1
T1 4 1
T2 8 1
T3 8 1
T4 8 2

Table I: RMS Schedule Parameters

Figure 1: Sample RMS Schedule with Task Preemption

repeat indefinitely while running. We will be expecting
the same RMS schedule including the correct periods,
computation times, and task preemption for both the
simulation waveforms and the synthesized FPGA result
on an OLED display.

IV. IMPLEMENTATION / SIMULATION ARCHITECTURE

For this project, we will be coding all of our designs
using Verilog, which will be compiled and simulated
using ModelSim on the Coover Linux VDI servers. We
used two lab computers for this, and synthesized our
FPGA design using Vivado, with a Xilinx FPGA Arty
A7 on the Basys 3 Development Board, which was
owned by one of our teammates personally. If other
FPGAs were needed in the future, a Zedboard could
be checked out from the ETG and could also utilize
Vivado, with other pin out constraints updated.

The overall design of our hardware RMS scheduler
would be to hook up into a standard processor design
connecting to the program counter and the register
files of a standard processor, as seen in Figure 2.
The design adds on the hardware of more register
files and program counters (one for each task) and
the control hardware at the benefit of decreasing the
context switching costs. Our design consists of a time
counter, task control, a 3 to 8 on the hot decoder, a
register file for each task, a task state register, and

a multiplexer for both the program counter and the
register data.

Each component plays an important role in com-
pleting the RMS task scheduling of finding which tasks
are not complete and telling the priority incomplete
task to complete.

A. Time Counter

The time counter is a basic counter that keeps track
of elapsed time to ensure tasks are reset at the correct
deadline and to ensure we do not run into overflow
issues. It resets on the Least Common Multiple of all
the tasks.

B. Control

The control module selects which task to be active
with RMS scheduling based on the period, which is
set at compile time and resets tasks as they hit their
deadline. In the event of overload, when not all tasks
can be completed, it resets them regardless of their
completion status. The control module completes two
major tasks. It tasks the current time compares it to
the periods of the tasks, and resets them as necessary
in addition to their LCM. It then updates the task’s
next deadline based on its period. Its other task is
comparing uncompleted tasks to select which task, if
any, to run. If all tasks are complete, not tasks are
running, and it just sits waiting for a task to reset due
to the deadline.

C. 3 to 8 One Hot Decoder

The 3 to 8 one hot decoder takes input from the
control module to select which task is running to
ensure that only the correct register file and the
program counter are updated for the active task.

D. Task Register File (32bit DFF)

Each task has its own register file to allow for fast
context switching to avoid dealing with pushing data
to memory which is time costly. It reads and writes
the data being manipulated by the program in the
ALU and memory, which we have modeled in our test
bench as a simple adder. The inputs to the ALU are
multiplexed between all the tasks and the write enable
ensures only the correct task writes it data back to a
task’s registers.

3



Figure 2: Top Level Schematic

E. Task State Register

The task state register tracks the state of each task
in terms of completion and its program counter. Each
task has its section of program memory and starting
location in memory. Additionally, each task has its
program counter to track where it is throughout its

program, and finally, it has a final program counter to
track where in memory the task has been completed
execution and can then set its completed signal telling
the control module it is completed. Upon reset, it is
then set to is starting program counter. By basing the
completion of a program counter, it ensures that if a

4



task is completed faster than its worst-case completion
time, it passes slack off to completing other tasks. The
current PC is then multiplexed between all the tasks
and handled by the processor’s logic based on the
instruction to handle branches a jumps, and similarly
to the Task registers, the write enable ensures only the
active task is updated.

V. EVALUATION

A. Testing Procedure

To test our implementation we used a variety of tools
each module listed in the implementation section we
created a separate test bed in VHDL to ensure that each
module was functioning as intended. Those test beds
were run in Questasim with a do file that is in each sub-
module folder. Once all sub-modules were put together
we then created a top-level test in Questasim with the
same task set as in Figure 1. We ran all these tests on
the Linux Virtual Machines the university provides.

To gain synthesis data and to run on an FPGA
we synthesized and generated a bitstream in Vivado,
and then flashed it to a FPGA with an OLED display
shown in Figure 3. This display outputs data for each
task, including its stored data, number of complete
computations, and if it is complete for its current
period. The schedule is stepped through the program
generating the clock input with a denounced push
button on the FPGA.

Next, we compared the data in the waveforms in
Figure 4 and the tasks on the FPGA and compared
them to that of the hand-completed RMS schedule
and ensured they lined up perfectly.

B. Analysis

To compare to a software RMS scheduler, we will
consider two theoretical processors of a 32-bit single-
cycle design: one that uses a software-scheduled RMS
with an RTOS and another that uses our architecture
to schedule tasks with RMS. The benefit of our design
in hardware is context switching and other overheads
imposed by the OS. Where every time there needs
to be a context switch the current task needs to
have its registers saved to memory, and the new
task needs to have its data loaded to memory. In
every instance where preemption needs to occur, we
see an overhead of 64 clock cycles, one for each
memory reference, which is optimistic given the latency
for larger memories. This can get very costly with

very many context switches. This is ignoring the
other overhead of an operating system to have tasks
preempted and calculating deadlines. Our hardware
handles all those overhead costs at the same time
as the other computations. This comes at the cost
described in Vivado results.

Figure 3: FPGA Implementation with OLED Screen

Vivado Implementation Results:

• Worst Negative Slack: 3.937ns
• Total Power Consumption: 0.089W
• Look Up Tables Used: 1120

5



Figure 4: Sample RMS Schedule Ran on Hardware Simulation

VI. CONCLUSIONS

From this experiment, we learned about the benefits
and trade offs of applying existing scheduler techniques
from software to hardware applications such as an
FPGA. We were able to design a hardware architecture
system based on previous classes such as CPRE 281 and
CPRE 381 and relate them to topics explored in CPRE
558, such as real-time systems and task schedulers. We
were able to successfully model an RMS schedule in
theory, in simulation, and in synthesis on an FPGA,
all with the same results, guaranteeing our design
functioned properly. This would enable future work to
be done with hardware schedulers with this design as
a baseline, where the same OLED display or FPGA top
level design could be reused to save on work.

Learning objectives are listed in Table II

A. Potential Future Exploration

Changes could be made easily to this architecture
to complete other scheduling algorithms or to handle
other scenarios, such as aperiodic events.

1) EDF Implementation
EDF could be implemented with this architecture

by tracking a down counter with the worse case
computation time in the task state register that is
decremented every clock cycle the processor allows to
that task to run, and then the control units compare

remaining time in addition to completion status to
select the active tasks.

2) Aperiodic Events
This scheduler could easily be added to handle

aperiodic events. The only change would be to have
the program counter for aperiodic events be reset upon
a set of a bit in memory from another task or from
I/O trigger it to be scheduled with whatever priority
the aperiodic task is given.

3) Integration to Full Processor
We would be able to better analyze the energy

tradeoffs of our RMS scheduler if it were hooked up to
a full pipelined processor, such as our 5-stage pipelined
MIPS processor designed in another course, CPRE381.
Since all of the RTL is already generated in that lab, it
would be useful to reuse and compare our hardware
scheduler with an existing processor to compare the
addition of power consumption.

6



Project
learning
objectives

Status Document
Pointers

Description
of project
goal, scope,
and relevant
requirements

Fully
Completed

Section II,
Page 1

Description
of solutions

Fully
Completed

Section III,
Page 2

Description
of implemen-
tation details

Fully
Completed

Section IV,
Page 3

Testing and
Evaluation

Mostly Com-
pleted

Section V,
Page 5

Overall
Project
Success
Assessment

Fully Success-
ful

Table II: Self-Assessment of Project Completion

REFERENCES

[1] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, and M. Imai,
“Hardware implementation of a real-time operating system,” in
Proceedings of the 12th TRON Project International Symposium,
pp. 34–42, 1995.

[2] M. Vetromille, L. Ost, C. Marcon, C. Reif, and F. Hessel, “Rtos
scheduler implementation in hardware and software for real
time applications,” in Seventeenth IEEE International Workshop
on Rapid System Prototyping (RSP’06), pp. 163–168, 2006.

[3] Y. Tang and N. W. Bergmann, “A hardware scheduler based on
task queues for fpga-based embedded real-time systems,” IEEE
Transactions on Computers, vol. 64, no. 5, pp. 1254–1267, 2015.

[4] D. Derafshi, A. Norollah, M. Khosroanjam, and H. Beitollahi,
“Hrhs: A high-performance real-time hardware scheduler,” IEEE
Transactions on Parallel and Distributed Systems, vol. 31, no. 4,
pp. 897–908, 2020.

VII. TEAM MEMBER CONTRIBUTION

Team Member contribution can be seen in Table III

Tasks/Member Jake H Thomas G
Literature survey None Previous Works

Design
RMS Schedule,
Brainstorming

Top Level
Schematic,
Brainstorming

Implementation
Top Level Mod-
ule, Register File,
Counter

Task State Register,
Control Module

Testing/Evaluation
Unit Testing, FPGA
Synthesis

Unit Testing, Wave-
form Validation

Preparation of the
Report and Presen-
tation

Introduction, Ob-
jectives, Methodol-
ogy, Slides

Implementation,
Evaluation, Slides

Total percentage of
contribution to the
project

50% 50%

Table III: Project Tasks and Member Contributions

7


	Introduction
	Project Objectives and Scope
	System Model
	Problem Statement
	Objectives and Scope

	Solution Methodology / Approach
	Algorithms / Protocols / Architectures
	Illustrative Example

	Implementation / Simulation Architecture
	Time Counter
	Control
	3 to 8 One Hot Decoder
	Task Register File (32bit DFF)
	Task State Register

	Evaluation
	Testing Procedure
	Analysis

	Conclusions
	Potential Future Exploration
	EDF Implementation
	Aperiodic Events
	Integration to Full Processor


	References
	Team Member Contribution

