CPRE 558 Project Proposal

Jake Hafele, Thomas Gaul
jmhafele@iastate.edu, tvgaul@iastate.edu
CPRE 558 Section 1
Department of Electrical and Computer Engineering
Iowa State University, Ames, IA 50014

I. PROJECT TYPE

Our proposed project will be an implementation
focused project.

For our design, we are proposing to model a real-
time RMS task scheduler on an FPGA development
board. In our design, we would include a control
module which would determine which periodic task is
currently active, and if any ready periodic tasks should
be preempted. This control module will drive a series
of register buffers, which holds critical information on
the state of each periodic task, such as its computation
time and period. A counter will be designed to load the
computed time of a task and increment the task based
on a preset clock period. Finally, we will be required
to design a register buffer module, which will hold the
state of each task, such as if it has been completed in
the current period, its current priority, etc.

FPGA’s are useful since they can be used to prototype
many different digital designs for cheap, since they are
reconfigurable, unlike the ASIC manufacturing process,
which is very expensive and time consuming. Com-
pared to using a software based RTOS implementation,
FPGAs can also be run at much faster clock speeds,
which could be beneficial for modeling RMS systems
with smaller task sets that require faster preemption.

II. PROJECT GOAL

Our project will be oriented around application
driven goals, which will be dictated by the RTL design
and FPGA implementation of an RMS scheduler which
has been covered in class.

Overall, the goal of this project will be to apply
what we have learned about RMS real-time system
schedulers and apply them to a field of interest
such as computer architecture and FPGA design.
By using experience we have gained in digital logic
and computer architecture design in classes such as

CPRE281 and CPRE381, we will be able to leverage
past experience in a new context such as real-time
systems, for an idea that has not been fully explored
in hardware implementation.

The following list of goals can be summarized as:

. Model periodic RMS task sets as learned in class

« Model RMS schedule on FPGA hardware

- Multiple queues of tasks based on priority

- Compile/Simulate RTL related to real-time system
topics

. Synthesize RTL for FPGA configuration for real-
time operation

. Preempt task sets based on periodic priority per
RMS

. Save register states in between tasks when pre-
empted

- Implement counter based on clock to monitor
RMS ready times

III. SOLUTION APPROACH

This project will expand on tools we have used
in previous courses, with the intent to spend more
time focusing on the real-time applications of an
RMS scheduler within the context of reconfigurable
hardware on an FPGA. We will be coding our project
using the Verilog HDL language, following IEEE
formatting. We will use tools provided to us with
the Coover lab computers, including HDL simulator
QuestaSim and FPGA synthesis tool Quartus Prime.
Since we are using Quartus Prime to synthesize
our design, we will need to use an Intel FPGA,
which Coover has in stock with their DE-2 FPGA
Development boards. In the Spring 2023 semester, we
used the DE-2 boards to synthesize our 5 stage MIPS
processor design successfully, and plan to recreate



that toolflow.

The following list of tools will be utilized for our
project:

« Coover RedHat Linux machines

- Verilog HDL language

« QuestaSim for RTL simulation

« Quartus Prime for FPGA synthesis

. DE2 FPGA Dev board

We will apply the same development process as
previous classes for developing the RTL and FPGA
synthesis, but the main focus of this project will be
recontextualizing an RMS schedule with a hardware
application. Work will be spent at the beginning of
the project to define our requirements based on an
example RMS task set, so that we can determine the
needs of our FPGA implementation based on counter
width, control signals, and how many task registers
to create. We will then follow into designing a block
diagram of our design and determining what 1/0
ports are needed between each module, which will
be instantiated in our final FPGA wrapper interface
to be reconfigured on the DE-2 development board.
The Verilog HDL designs will be designed in a text
editor of choice, and simulated using QuestaSim,
to debug functional waveform errors. Using these
wave forms, we can determine if our RMS task
sets are being preempted properly, becoming active
at the correct time, and are following the correct
computation times based on a set synchronous design.

The following process will be used throughout our
project for development:

1) Define RMS requirements

2) Create RMS task set for FPGA implementation
3) Define function of each module

4) Draw Block Diagrams for RTL modules

5) Define 1/0 ports for each module

6) Delegate designer/tester for each module

7) Design RTL using VSCode

8) Test/debug RTL using QuestaSim

9) Synthesize for DE2 board / debug synthesis
10) Evaluate on DE2 board

IV. EXPECTED OUTCOMES

Our expected outcomes will be a mix of performance
evaluation using simulation and demo evaluation using
implementation. The simulation results will come from

our RTL waveform results using Verilog testbenches
and waveforms generated using QuestaSim. The de-
mo/evaluation portion will be used from our final
project on a DE-2 FPGA development board, which
will be able to confirm the state of multiple period
tasks in our implemented RMS scheduler, which should
match our expected waveform results from simulation.
All of the testbenches and the FPGA configuration for
the development board should be reproducible as a
final deliverable for the project.

Our expected outcomes can be summarized as
below:

. Create reusable Verilog test-benches to create
waveforms with RMS scheduler and task preemp-
tion

- Demonstrate simulated waveforms showing RMS
preemption and task control

- Synthesize RMS scheduler on FPGA and run in
real-time

. Demonstrate matching RMS scheduler results
between constructed task, waveforms, and synthe-
sized results

. Create FPGA configuration deliverable that can be
reused on DE-2 FPGA development board

V. RELATED WORK

Our idea of hardware-based scheduling is novel
within the scope of course content in CPRE 55, but it
has been explored in many different applications by
researchers. The idea was initially suggested in 1995
in the paper "Hardware implementation of a real-time
operating system" [1]. From there, it was researched
in several ways for the last 28 years. We explore a
handful of these previous works as inspirations for our
implementation of hardware-based scheduling.

The first paper in 1995 proposed implementing
major parts of a real-time operating system in hardware
and comparing it to its hardware counterparts. They
implemented their primary hardware kernel on an
FPGA and found that it performed overwhelmingly
well. It performed many times faster than its software
counterpart, and the kernel took up less than half the
space. The only cost of this concept is the hardware
development costs. The next paper we looked at
explored the pros and cons of three setups: software,
software with a coprocessor, and hardware-software [2].
They found that the hardware outperforms either of
the software-exclusive versions and takes up less area



and power than a coprocessor solution. Once again,
the only issue with this solution is implementation
complexity.

Some of the more modern papers look into some
other aspects of application outside of overall perfor-
mance. In the paper "A Hardware Scheduler Based
on Task Queues for FPGA-Based Embedded Real-Time
Systems," they suggest the possibility of creating a
scheduling accelerator that could run on an FPGA
in addition to a processor-implemented on an FPGA,
which could outperform a hardcore processor due to
the advantages of a hardware scheduler [3]. In addition,
the paper explores the option of more complicated
algorithms that don't take bandwidth due to the hard-
ware accelerator. The next paper we looked at, "A High-
Performance Real-Time Hardware Scheduler" looked
into algorithms for scheduling a multicore system,
which is typically processor-heavy for optimization
[4]. Like the early papers, the authors found that these
hardware options outperformed software options in
every category except implementation complexity.

REFERENCES

[1] T. Nakano, A. Utama, M. Itabashi, A. Shiomi, and M. Imai,
“Hardware implementation of a real-time operating system,” in
Proceedings of the 12th TRON Project International Symposium,
pp. 34-42, 1995.

[2] M. Vetromille, L. Ost, C. Marcon, C. Reif, and E Hessel, “Rtos
scheduler implementation in hardware and software for real
time applications,” in Seventeenth IEEE International Workshop
on Rapid System Prototyping (RSP'06), pp. 163-168, 2006.

[3] Y. Tang and N. W. Bergmann, “A hardware scheduler based on

task queues for fpga-based embedded real-time systems,” IEEE

Transactions on Computers, vol. 64, no. 5, pp. 1254-1267, 2015.

D. Derafshi, A. Norollah, M. Khosroanjam, and H. Beitollahi,

“Hrhs: A high-performance real-time hardware scheduler,” IEEE

Transactions on Parallel and Distributed Systems, vol. 31, no. 4,

pp. 897-908, 2020.

(4



	Project Type
	Project Goal
	Solution Approach
	Expected Outcomes
	Related Work
	References

