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1 Introduction

This documentation was generated for a 1 credit CPRE 595 Independent Study.
This document acts as a getting started guide using the open-source tool OpenF-
PGA, which can generate FPGA fabric netlists, automated simulation verifica-
tions, SPICE results, and custom configurations for functional Verilog and cell
libraries.

This document overviews:

• Tools used in OpenFPGA

• Overview of OpenFPGA structure

• How to install OpenFPGA locally and with Docker

• How to generate a FPGA fabric netlist

• How to verify a FPGA fabric netlist with multiple benchmarks

• How to add custom Verilog modules to FPGA architecture

• How to add custom cell library to FPGA architecture

1.1 OpenFPGA Motivation

According to the authors of OpenFPGA [1], many FPGA products require spe-
cific hardware integration such as large memory blocks or custom optimizations,
which can lead to longer development times. Similar to standard ASIC design,
there is a large barrier of entry in expertise and time for hardware design and
tooling, which can take years to learn. From having to handle manual FPGA
layouts or EDA tools for bitstream generation, many different aspects of the
FPGA design cycle have led to slowing work. Due to this, many designs have
taken a more generalized approach, while missing out on more advanced opti-
mizations that could be required in the future.

OpenFPGA solves this issue by providing an agile framework that can lead
to fast turnaround times to build custom FPGA architectures and bitstreams to
program said devices. The first design flow converts a XML FPGA architecture
description to GL Verilog netlists consisting of the full FPGA design, which
could then be fed into another EDA tool for place and route design. This
flow can also generate automated testbenches comparing the benchmark design
and another design reconfigured in the new FPGA fabric, leading to shorter
verification times. The second design flow revolves around generating bitstream
files for specific FPGA fabrics based on a set of functional Verilog designs, similar
to standard EDA tools such as Vivado. By utilizing both of these toolflows, the
authors of OpenFPGA were able to achieve layout designs within 24 hours for an
architecture design similar to the Stratix IV. Compared to commercial FPGAs,
OpenFPGA has generated a layout with a 60%/20% area/performance gap,
with the added benefit of a faster design cycle.
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OpenFPGA has included many features in one package that only few previ-
ous works have covered at once:

• Multimode logic blocks, only included in more recent works [2][3]

• Heterogenous blocks [3]

• Tile-based architecture, needed for larger scale FPGAs [4]

• Bitstream generation, missing in few works [4] [5] [6]

• Custom cell support, not supported by any previous works
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2 Tool Overview

2.1 Supported Tools

The following figure shows a top level diagram of the OpenFPGA Architecture1.
The sections in green and purple represent custom tools made for OpenFGPA,
while tools in grey represent standard open-source tools such as Yosys or sim-
ulation tools. The sections in yellow represent interchangable files that can
include timing constraints, netlists, testbenches, and synthesized designs that
are dependent on the design being made.

Figure 1: OpenFPGA Internal Tools[7]

The following commercial and open-source tools may be utilized [7]:

• Backend

– Synopsys IC Compiler II (v2019.03+)

– Cadence Innovus (v19.1+)

• Timing Analysis
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– Synopsys PrimeTime (2019.03+)

– Cadence Tempus (19.15+)

• Verificaiton

– Synopsys VCS (v2019.06+)

– Synopsys Formality (v2019.03+)

– Mentor ModelSim (v10.6+)

– Mentor QuestaSim (v2019.3+)

– Cadence NCSim (v15.2+)

– Icarus iVerilog (v10.1+)

2.2 Fabric Netlists

FPGA Fabrics are created based on the VPR toolflow and XML architecture
files which outline the entire FPGA structure. By utilizing OpenFPGA, the
Verilog files will get defined with a top level FPGA module and subsequent
blocks, as depicted in Figure 2.

Figure 2: Fabric Netlist Verilog Heirarchy[7]

Generated Verilog Files:

• fabric netlists.v: Top level verilog file which contains top level FPGA
module and user-defined Verilog netlists

• fabric defines.v: User-defined Verilog netlists to be referenced in fabric-
netlists for verification

• fabric top.v: Top-level module consisting of generated FPGA fabric;
Includes tiles, logic blocks, routing blocks, and primitives
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• tile x y.v: Unique netlist for each tile, consists of logic blocks and routing
blocks

• Logic Blocks: Contains configurable logic blocks, I/O blocks, DSP mod-
ules, or Block RAM

– physical tile name.v: Verilog netlist generated for each [physi-
cal tile] defined in VPR architecture

– logical tile name.v: Verilog netlist for each root pb type in the
[complexblock] for defined in VPR architecture

• Routing Blocks:

– sb x y.v: Individual netlist for each unique switch block defined by
VPR architecture

– cbx x y.v: Individual netlist for each unique X-direction connection
block defined by VPR architecture

– cby x y.v: Individual netlist for each unique Y-direction connection
block defined by VPR architecture

• Primitive Modules All defined under OpenFPGA XML architecture file

– luts.v: Look-Up Tables, defined under [circuit model name=”lut”]

– wires.v: Routing wires, defined under [circuit model name=”wire—chan wire”]

– memories.v: Configurable memory, defined under [circuit model
name=”ccff—sram”]

– muxes.v: Routing multiplexers, defined under [circuit model name=”mux”]

– inv buf passgate.v: Inverters, defined under [circuit model name=”lut”]

– local encoder.v: Encoders and Decoders, created when routing
MUX defined to use local encoders, defined under [circuit model
name=”lut”]

– user defined templates.v: Template netlist which can be used as
a reference for their own user-defined Verilog modules. This file will
be created when --print_user_defined_template is added to the
write_fabric_verilog command.

Figure 3 below represents a sample architecture diagram of the generated
Verilog netlists. It can be seen that each tile contains a logic block, X/Y-
connection blocks, and a switch block. Inside each configurable logic block in
the sample shows inverter buffers, multiplexers, and local encoders.
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Figure 3: Fabric Netlist Generated Architecture[7]

2.3 Testbenches

To test functional benchmark designs with different FPGA fabrics, verilog test-
benches can be used which generates waveforms to be viewed and cross checked.
The overall heirarchy for the testflow is demonstrated in Figure 4. The same
input stimulus is driven into both the original functional Verilog design that
is used as a benchmark as well as the generated FPGA fabric. Then, the ex-
pected output from the functional benchmark design is cross checked with the
output from the generated FPGA fabric, to ensure that there are no differences
in values. If there is, then the design would not function properly on the gener-
ated FPGA netlist. A bitstream file is generated utilizing FPGA-Bitstream to
program the FPGA fabric before evaluation and cross-checking.
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Figure 4: OpenFPGA Internal Tools[7]

Verilog testbenches are generated with the command write fabric verilog
which can be run directly are as part of an OpenFPGA task flow. In the
designated output directory, two different testbench models are generated, as
seen in Figure 5.

Figure 5: OpenFPGA Internal Tools[7]

The Full Testbench is divided into two phases, as seen in Figure 6. The
goal is to simulate a FPGA’s entire operating area, by driving inputs to all
possible pins on the FPGA. In the first phase, the Configuration Phase, the
generated bitstream is loaded into the programmable input of the FPGA fabric,
after the FPGA system is reset. After this occurs, the Operating Phase be-
gins, where random input stimulus is generated for the FPGA fabric AND the
baseline functional benchmark. If the FPGA outputs from the random vectors
do not match the benchmark outputs, then an error counter will tick and the
verification will fail.

The Formal-oriented Testbench takes less time to simulate, and will
test a reconfigured FPGA with an instantiated bitstream. Since the FPGA is
already instantiated with the bitstream, the configuration phase does not need
to occur like in the Full testbench above. Take this with warning though, as this
DOES NOT verify the configuration protocol for this form of testing. Instead,
the benchmark module has the same port mappings for both the FPGA fabric
with bitstream instantiated as well as the original RTL design, leading to 100%
coverage in verification. This form of verification is very useful when validating
a large amount of different benchmarks in one script.
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Figure 6: OpenFPGA Internal Tools[7]

2.4 Supplemental Resources

The following list of YouTube videos were included in the user documentation
to help first time users:

• Why OpenFPGA?: https://www.youtube.com/watch?v=ocODUGcYGqo

• How to install OpenFPGA?: https://www.youtube.com/watch?v=

F9sMRmDewM0

• How to generate a fabric?: https://www.youtube.com/watch?v=aJ0OkZ1uh68

• Integrating Custom Verilog Modules: https://www.youtube.com/

watch?v=YTggSZHsTjg
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3 Tool Installation

This section will overview the required operating system, dependencies, git
repository, and build commands to properly setup and confirm OpenFPGA
setup.

The following user guide was utilized to build the OpenFPGA tool chain[7]:
https://openfpga.readthedocs.io/en/master/tutorials/getting_started/

compile/

3.1 Operating Systems

OpenFPGA is continuously tested using Ubuntu 20.04. Alongside this, the
following operating systems have been tested by community members:

• CentOS 7.8

• CentOS 8

• Ubuntu 18.04

• Ubuntu 21.04

• Ubuntu 22.04

For this independent study, Ubuntu 20.04 was used on a WSL2 Instance of
Windows 10, as reccomended in the documentation.

3.2 Docker Install

A docker image can be installed on Ubuntu 20.04, which contains pre-compiled
OpenFPGA binaries with all dependencies:

# To get the docker image from the repository,

docker pull ghcr.io/lnis-uofu/openfpga-master:latest

# Create Local folder to link with Docker Volume

mkdir work

# Create Docker container and volume

docker run -it -v work:/opt/openfpga/

ghcr.io/lnis-uofu/openfpga-master:latest bash

# Navigate to openfpga repo

cd /opt/openfpga/

# Source dependencies

source openfpga.sh
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# Verify tools run

run-task compilation_verification

3.3 Dependencies (Without Docker)

An issue arose where I did not have write permissions in the Docker image, so
I was unable to run any OpenFPGA tasks to generate netlists or testbenches.
For this reason, I opted to install all of the dependencies locally instead an an
Ubuntu 20.04 WSL2 instance on my Windows 10 computer. This had no issues.

Dependencies to build source code:

sudo add-apt-repository -y ppa:ubuntu-toolchain-r/test

sudo apt-get update

sudo apt-get install -y \

autoconf \

automake \

bison \

ccache \

cmake \

ctags \

curl \

doxygen \

flex \

fontconfig \

gdb \

git \

gperf \

iverilog \

libc6-dev \

libcairo2-dev \

libevent-dev \

libffi-dev \

libfontconfig1-dev \

liblist-moreutils-perl \

libncurses5-dev \

libreadline-dev \

libreadline8 \

libx11-dev \

libxft-dev \

libxml++2.6-dev \

make \

perl \
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pkg-config \

python3 \

python3-setuptools \

python3-lxml \

python3-pip \

qt5-default \

tcllib \

tcl8.6-dev \

texinfo \

time \

valgrind \

wget \

zip \

swig \

expect \

g++-7 \

gcc-7 \

g++-8 \

gcc-8 \

g++-9 \

gcc-9 \

g++-10 \

gcc-10 \

g++-11 \

gcc-11 \

clang-6.0 \

clang-7 \

clang-8 \

clang-10 \

clang-format-10 \

libxml2-utils \

libssl-dev \

gtkwave

Packages for regression tests:

# Update as required by some packages

sudo apt-get update

sudo apt-get install --no-install-recommends -y \

libdatetime-perl libc6 libffi-dev libgcc1 libreadline8 \

libstdc++6 \ libtcl8.6 tcl python3.8 python3-pip zlib1g \

libbz2-1.0 iverilog git rsync make curl wget tree \

python3.8-venv
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3.4 Build Steps

Use the following steps to clone the OpenFPGA git repository and build the
project, without using Docker:
Clone Repository:

git clone https://github.com/LNIS-Projects/OpenFPGA.git

Python packages required:

cd OpenFPGA

python3 -m pip install -r requirements.txt

Build source code:

cd OpenFPGA

make all

To verify that the tool has successfully compiled, run the following
Python script in the project root directory:

python3 openfpga_flow/scripts/run_fpga_task.py \

compilation_verification --debug --show_thread_logs

Figure 7: Compilation Verification Task Output
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4 Running Tools

4.1 Folder Structure

In the root directory of the OpenFPGA project, the following directories are
provided:

OpenFPGA

.github

build

cmake

dev:

docker

docs

libs

openfpga

openfpga flow

vtr-verilog-to-routing

yosys

yosys-plugins

openfpga.sh

• .github, build, cmake, dev, docker, libs, and openfpga are all used
to either compile or develop the OpenFPGA repository. These folders
should not be modified while using OpenFPGA.

• docs can be used to rebuild the OpenFPGA user documentation.

• openfpga flow is used to create tasks, cell libraries, and FPGA architec-
ture definitions

• vtr-verilog-to-routing, yoysys, and yosys-plugins are all submodules
that are used for archiecture definitions and compilations.

• openfpga.sh is used to source commands referenced in section 4.2.

4.2 Shell Commands

A set of commands can be run after the openfpga.sh script is sourced in the
root OpenFPGA direction:

export OPENFPGA_PATH=<path-to-openfpga-repository-root>

cd ${OPENFPGA_PATH} && source openfpga.sh

The following list of commands can now be run:

• list-tasks

Lists all OpenFPGA tasks from current task directory. Default task di-
rector is OpenFPGA/openfpga_flow/tasks
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• run-task <task_name> *kwarags

Runs the specified task. Will first look in current working directory, then
search in defined TASK_DIRECTORY. Can also provide a path as a task
name.

• create-task <task_name> <template>

Create a template task in current directory with given task name. The
template is optional, and can be configured as one of two options. vpr_

blif is a template for running toolflow with a .blif file as an input (VPR
+ netlist generation). yosys_vpr is a template for running flow with a
Verilog file as an input (Synthesis + VPR + Netlist generation). This
command can also be used to copy example projects.

• goto_task <task_name> <run_num[default 0]>

This command will change directories to a specified run-directory of the
given task.

• clear-task-run <task_name>

Clear all run directories of a given task.

• run-modelsim <task_name>

Runs verification using ModelSim. Test benches are generated during the
toolflow run. VSIM must be installed and configured.

• run-regression-local

Runs the regression test locally using the current version of OpenFPGA.

• unset-openfpga

Unregisters all shortcuts and commands from current shell.

4.3 OpenFPGA Tasks

Important Notes:

• Task config is setup under OPENFPGA_PATH/openfpga_flow/tasks/TASK_
PATH/config

• All tasks are defined under: OPENFPGA_PATH/openfpga_flow/tasks

• All FPGA Architecture XML’s are located under: OPENFPGA_PATH/openfpga_
flow/openfpga_arch/ or OPENFPGA_PATH/vpr_arch/

• All OpenFPGA Shell Scripts are located under: OPENFPGA_PATH/openfpga_
flow/openfpga_shell_scripts/

• All benchmarks are located under: OPENFPGA_PATH/openfpga_flow/benchmarks/

• Generated netlists written to openfpga verilog output dir
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• Multiple benchmarks can be utilized by incrementing the number up by
1 for every new benchmark

Defining Task Config Parameters:

• General

– power tech file: XML File for power analysis

– power analysis: Set to ’True’ if using power analysis

– spice output: Set to ’True’ if generating SPICE output

– verilog output: Set to ’True’ if generating Verilog FPGA Fabric
netlist

– arch variable file: yml file in local task configuration to define
benchmark variables

• OpenFPGA Shell

– openfpga shell template: Shell script to run under OPENFPGA_

PATH/openfpga_flow/openfpga_shell_scripts/

– openfpga arch file: OpenFPGAXML Architecture file sourced un-
der OPENFPGA_PATH/openfpga_flow/openfpga_arch/

– openfpga sim setting file: Simulation settings under OPENFPGA_

PATH/openfpga_flow/openfpga_simulation_settings/

– openfpga verilog output dir: Output directory for generated Ver-
ilog fabric netlists

• Architectures

– arch0: VPR XML Architecture file sourced under OPENFPGA_PATH/
openfpga_flow/vpr_arch/

• Benchmarks

– bench0: Benchmark to validate generated FPGA fabric OPENFPGA_
PATH/openfpga_flow/benchmarks/BENCHMARK_PATH/BENCHMARK.blif

• Synthesis

– bench0 top: Name of benchmark folder

– bench0 act: .act file for benchmark OPENFPGA_PATH/openfpga_flow/
benchmarks/BENCHMARK_PATH/BENCHMARK.act

– bench0 verilog: .v file for benchmark OPENFPGA_PATH/openfpga_

flow/benchmarks/BENCHMARK_PATH/BENCHMARK.v

Additional notes on Tasks: https://openfpga.readthedocs.io/en/master/
manual/openfpga_flow/run_fpga_task/#creating-a-new-openfpga-task
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4.4 OpenFPGA Flow

An alternative way to run OpenFPGA with one benchmark and XML architec-
ture definition is by utilizing the provided python script under path OPENFPGA_

PATH/openfpga_flow/scripts/run_fpga_flow.py.
The minimum command line arguments are required:

open_fpga_flow.py <architecture_file> \

<benchmark_files> --top_module <top_module_name>

File Descriptions for OpenFPGA Flow:

• [architecture file]: Target FPGA architecture

• [benchmark files]: List of benchmark files to test at /path/to/benchmarks/
*.v

• [top module name]: Name of top level module in Verilog project

This script will create a /tmp/ directory under the root OpenFPGA repos-
itory path, which will overwrite any previous contents to the directory when
a new flow is run. Architecture files will be copied to the /tmp/arch/ direc-
tory and benchmark files will be copied to the /tmp/bench/ directory before
execution.

4.5 Fabric Netlist Generation

Many sample tasks are given to run to provide net-list generation, including
the below generate fabric task under the basic tests folder. This task gener-
ates an FPGA fabric net list based on a defined FPGA architecture XML file
(arch variable file and arch0), which can then be compiled using iVerilator or
ModelSim.
Run generate fabric Task in project root folder:

python3 openfpga_flow/scripts/run_fpga_task.py \

basic_tests/generate_fabric

# If sourced openfpga.sh, can instead run:

run-task basic_tests/generate_fabric

Once Verilog netlists are generated, they can be compiled with iVer-
ilator:
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Figure 8: Generate Fabric Task Output

cd ${OPENFPGA_PATH}/openfpga_flow/tasks/basic_tests/

generate_fabric/latest/k6_frac_N10_tileable_40nm/

and2/MIN_ROUTE_CHAN_WIDTH

iverilog SRC/fabric_netlists.v

After the iverilog command is run, it can be verified that the generated
output a.out is made in the output folder for the generated netlists9.

Figure 9: Generate Fabric iVerilog Compilation Output

4.6 Simulation

Other task flows can be ran to generate testbenches and matching waveform
outputs, to verify that the generated FPGA netlists will function with vary-
ing benchmarks. By using the default benchmarks in the full_testbench/

configuration_chain OpenFPGA Task, a testbench with a 2 input AND gate,
2 input OR gate, and latched 2 input AND gate will all be generated.

Generated results will be placed under the task directory, which includes
.vcd files to verify designs using a waveform viewer, such as GTKWave. To
run additional testbenches, add in source code for behavioral verilog under
OPENFPGA_PATH/openfpga_flow/benchmarks/. The architecture files for the
specific FPGA fabric can be altered under the config file for the full testbench
task under OPENFPGA_PATH/openfpga_flow/tasks/basic_tests/full_testbench/
configuration_chain. Many benchmarks are already included which can be
tested for functionality with a waveform viewer, including adders, basic logic
gates, clock dividers, dual port RAM, and FIR filters.
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Figure 10 references the Task configuration settings when running the test-
bench task. As outlined before, it sets a power analysis to a 45nm tech node,
and designates TRUE for a Verilog output to generate a verilog FPGA fabric
netlist. FPGA Architectures can be altered with the openfpga arch file and
arch0 settings in the config file. Three different benchmarks are defined, un-
der the BENCHMARKS section, with an increasing number for each following
benchmark.

Figure 10: full testbench/configuration chain Task Config

To generate and view full testbench waveforms:

run-task basic_tests/full_testbench/configuration_chain

gtkwave ${OPENFPGA_PATH}/openfpga_flow/tasks/

\basic_tests/full_testbench/configuration_chain/

latest/k4_N4_tileable_40nm/and2/

MIN_ROUTE_CHAN_WIDTH/and2_formal.vcd &

Simulation results can be seen in Figure 11. It can be verified that all three
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benchmarks (or jobs), have ran serially, verifying that the AND2, OR2, and
latched AND2 benchmarks all completed and successfully passed.

Figure 11: full testbench/configuration chain Task Results

As mentioned before, waveforms can be investigated using GTKWave, as
seen in Figure 12. This waveform overviews the majority of the 2 input AND
gate benchmark with a full testbench model. In this model, as introduced
previously, the FPGA fabric is programmed with a generated bitstream in the
Configuration Phase. It should be noted how long this takes to configure, by
incrementing through every bit index of the bitstream to program the K4 N4
FPGA fabric. By running the other testbench mode, the Formal-oriented
Testbench, simulation times could be reduced.

Figure 12: 2 Input AND Configuration Phase

In the Evaluation Phase, seen in Figure 13, the inputs a shared input and
b shared input are randomly driven. The expected output c benchmark, from
the functional AND2 verilog module, is cross-checked with the FPGA fabric
output c fpga. As can be seen, every output matches, so the error counter does
not increment, and the benchmark passes. A similar process follows for the
other two simulated benchmarks, including a 2 input OR gate and latched 2
input AND gate.
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Figure 13: 2 Input AND Evaluation Phase

To generate and view formal-oriented testbench waveforms:

run-task basic_tests/preconfig_testbench/

configuration_chain

gtkwave ${OPENFPGA_PATH}/openfpga_flow/tasks/

\basic_tests/preconfig_testbench/configuration_chain/

latest/k4_N4_tileable_40nm/and2/

MIN_ROUTE_CHAN_WIDTH/and2_formal.vcd &

A different testbench was generated and simulated based on the openfpga_
shell_template script. For the formal-oriented testbench, the script example_
script was ran, which included two additional commands for the shell script, in-
cluding write_preconfigured_fabric_wrapper and write_preconfigured_

testbench, which would alter the generated testbench to be formal-oriented.
The waveform below14 was generated by running the preconfig testbench

task with the path tasks/basic_tests/preconfig_testbench/configuration_
chain. This task runs the same three sample benchmarks, including a 2 input
AND gate, 2 input OR gate, and latched 2 input AND gate, with the formal-
oriented testbench protocol. While this does not test the FPGA configuration,
simulation time run for a duration of 8ns against the previous 4359ns for the
full testbench for verifying a 2-input AND gate. The full testbench would prove
to take even longer with larger FPGA protocols, since it would take longer to
index for every bit in the FPGA fabrics bitstream.

Figure 14: 2 Input AND Formal Results
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4.7 Synthesis

Synthesis can be achieved using commercial tools such as Cadence alongside the
OpenFPGA toolflow to create GDSII layout files for designated FPGA fabrics.
Since the tools are commercially available and not open-source, the scripts pro-
vided to complete layout have not been provided. This would be interesting to
follow up in future work with open-source tools such as OpenROAD. An exam-
ple image of an FPGA Layout from the documentation can be seen in Figure
15.

Figure 15: Sample Layout[7]

22



5 Architecture Modeling

5.1 Custom Verilog Modules

Using OpenFPGA, it is also possible to define custom verilog modules to be
generated alongside the FPGA fabric netlist.

To achieve this, we will begin by editing the XML file under the path
openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.

xml. This new line of code removes the reference for the verilog netlist path,
which previously pointed to the openfpga cell library and related functional
adder description. By removing the netlist path, we will generate an intended
error and a user defines template which we can insert our own adder design.
Replace Line’s 183 with the following in k6_frac_N10_adder_chain_

40nm_openfpga:

<circuit_model type="hard_logic" name="ADDF" prefix="ADDF"

is_default="true" spice_netlist="${OPENFPGA_PATH}/

openfpga_flow/openfpga_cell_library/spice/adder.sp"

verilog_netlist="">

Run the hard adder task at the root directory:

source openfpga.sh

run-task fpga_verilog/adder/hard_adder

Figure 16 demonstrates the expected iVerilog compilation error after remov-
ing the adders original verilog netlist path.
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Figure 16: Synthesis Fail with No Verilog Netlist Adder Path

While the compilation failed, the Verilog file user defined templates was cre-
ated which can be utilized to reference a custom Verilog adder.

Path to replace code with: openfpga_flow/tasks/fpga_verilog/adder/
hard_adder/latest/k6_frac_N10_tileable_adder_chain_40nm/adder_8/MIN_

ROUTE_CHAN_WIDTH/SRC/sub_module/user_defined_templates.v

Add the following ADDF module to user define templates :

module ADDF(A,

B,

CI,

SUM,

CO);

//----- INPUT PORTS -----

input [0:0] A;

//----- INPUT PORTS -----

input [0:0] B;

//----- INPUT PORTS -----

input [0:0] CI;

//----- OUTPUT PORTS -----

output [0:0] SUM;

//----- OUTPUT PORTS -----

output [0:0] CO;

//----- BEGIN wire-connection ports -----
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//----- END wire-connection ports -----

//----- BEGIN Registered ports -----

//----- END Registered ports -----

// ----- Internal logic should start here -----

assign SUM = A ^ B ^ CI;

assign CO = (A & B) | (A & CI) | (B & CI);

// ----- Internal logic should end here -----

endmodule

Now, go back to the previously edited XML file, and under Line 183, set
the following path for the verilog netlist: ${OPENFPGA_PATH}/openfpga_flow/
tasks/fpga_verilog/adder/hard_adder/**YOUR_RUN_NUMBER**/k6_frac_N10_

tileable_adder_chain_40nm/adder_8/MIN_ROUTE_CHAN_WIDTH/SRC/sub_module/

user_defined_templates.v.
NOTE: The path states ”YOUR RUN NUMBER” since the newest run of

the defines will switch the symlink to latest. By default, the first run of the
Hard Adder task should be ”run001”.

This will guarantee that the newly edited user define template, which con-
tains our new adder definition, will be referenced in the architecture XML file.
Re-run the hard adder task at the root directory:

run-task fpga_verilog/adder/hard_adder

Figure 17 demonstrates a successful run with the implemented custom Ver-
ilog adder to be used in the CLB for the FPGA fabric configuration.

Figure 17: Custom Verilog Adder Successful Run

Figure 18 demonstrates verified functionality through the formal-oriented
testbench. As before, the inputs are driven for a, b, and cin and the bench-
mark output is cross-checked with the output from the mapped FPGA fabric
to validate the adder.
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Figure 18: Custom Verilog Adder Waveform Results

5.2 Custom Cell Library

Open-source standard cell libraries can also be utilized with OpenFPGA, such
as the open-source SkyWater 130nm PDK.

First, clone and make the Skywater PDK into the root OpenFPGA
folder:

git clone https://github.com/google/skywater-pdk.git

Next, run the following make command in the cloned Skywater PDK:

cd skywater-pdk/

SUBMODULE_VERSION=latest make submodules -j3 \

|| make submodules -j1

With the Skywater PDK installed, the OpenFPA XML architecture file can
now be edited. For this example, we will edit the XML file under the path
openfpga_flow/openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.

xml, and utilize the task fpga_verilog/adder/hard_adder.
First, open the OpenFPG XML configuration file under the path openfpga_

flow/openfpga_arch/k6_frac_N10_adder_chain_40nm_openfpga.xml. The
code snippet below will be the first to change to the architecture, being that the
model for the 2 input OR gate will be updated to use the Skywater PDK or cell
in the sky130_fd_sc_ls library. Most notable, the name, prefix, verilog netlist
path, and port names (prefixes) will all be updated to match the Skywater PDK
2 input OR cell.

NOTE: The documentation online stated to update lines 67 to 81, but it
appears the XML file has been updated since then. Look for the standard OR
gate under the circuit library section near the top of the XML file.
Replace Line’s 68 to 82 with the following in k6_frac_N10_adder_chain_

40nm_openfpga:
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<circuit_model type="gate" name="sky130_fd_sc_ls__or2_1"

prefix="sky130_fd_sc_ls__or2_1"

verilog_netlist="${OPENFPGA_PATH}/skywater-pdk/libraries

/sky130_fd_sc_ls/latest/cells/or2/sky130_fd_sc_ls__or2_1.v">

<design_technology type="cmos" topology="OR"/>

<input_buffer exist="false"/>

<output_buffer exist="false"/>

<port type="input" prefix="A" size="1"/>

<port type="input" prefix="B" size="1"/>

<port type="output" prefix="X" size="1"/>

</circuit_model>

A second change must also occur at Line 156, and replaced with the following
code below. This will ensure that the added skywater PDK OR gate, with an
updated circuit model name, will now be utilized when defining the netlists for
the Look-Up Tables.

NOTE: Like before, the referenced line numbers were off, and the referenced
documentation noted Line 160 should change. The updated line should be the
OR gate in the LUT with name frac_lut6.

Replace Line 156 with the following in k6_frac_N10_adder_chain_40nm_

openfpga:

<port type="input" prefix="in" size="6" tri_state_map="----11"

circuit_model_name="sky130_fd_sc_ls__or2_1"/>

Run FPGA-Verilog task to generate adder benchmark with Skywater
PDK:

source openfpga.sh

run-task fpga_verilog/adder/hard_adder

At this point, when attempting to run the hard adder task, a compilation
will occur in iVerilog. Luckily, an iverilog output file has been generated, which
can be updated and manually recompiled to generate a FPGA fabric netlist
with our Skywater cell and a pairing waveform output.

To solve this, open the generated output iverilog_output.txt at path
openfpga_flow/tasks/fpga_verilog/adder/hard_adder/latest/k6_frac_N10_

tileable_adder_chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/iverilog_output.

txt. Next, we will include the path to the 2 input or gate in the skywater pdk
instead of the/SRC/ directory local to the task flow.
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Replace all text inside iverilog output.txt with the following:

iverilog -o compiled_adder_8 \

./SRC/adder_8_include_netlists.v \

-s adder_8_top_formal_verification_random_tb -I \

${OPENFPGA_PATH}/skywater-pdk/libraries/

sky130_fd_sc_ls/latest/cells/or2

Manually recompile using iVerilog:

cd openfpga_flow/tasks/fpga_verilog/adder/hard_adder/

latest/k6_frac_N10_tileable_adder_chain_40nm/adder_8/

MIN_ROUTE_CHAN_WIDTH/

source iverilog_output.txt

vvp compiled_adder_8

Figure 19 displays the expected terminal output after manually running
iVerilog and generating waveform results.

Figure 19: Skywater Hard Adder Task Result

Figure 20 shows the synthesized netlist including the sky130 PDK 2 in-
put OR gates in the luts.v Verilog module. The path for this generated re-
sult is openfpga_flow/tasks/fpga_verilog/adder/hard_adder/latest/k6_
frac_N10_tileable_adder_chain_40nm/and2/MIN_ROUTE_CHAN_WIDTH/SRC/sub_

module/luts.v
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Figure 20: Skywater Synthesized LUT Netlist

Figure 21 demonstrates a functional output utilizing the Skywater 2 input
OR gate as part of the LUT netlist for the FPGA fabric. The inputs a, b, and
cin are driven with all 8 possible input combinations, and guarantees matching
behavior between the benchmark output and the FPGA fabric output.

Figure 21: Skywater Hard Adder Task Waveform Results
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6 Conclusion

To conclude, through this independent study I was successfully able to clone,
build, and run through OpenFPGA by utilizing multiple tasks. I was able to
learn more about generating FPGA fabrics, verifying functional correctness,
and modifying their architecture with custom functional Verilog designs and
custom cell libraries. With this independent study, I was able to integrate the
Skywater library that I have been using for senior design in a new light, and
connect the dots with other classes such as EE 465. Future work could be done
to investigate the place and route flow with either commercial tools such as
Cadence or open-source flows such as OpenROAD and the OpenMPW Shuttle
project hosted by eFabless.

6.1 Generated Results

The following list of images and results were my own work:

• 3.4 Build Steps

– Figure 7, Compilation Verification Task Output

• 4.5 Fabric Netlist Generation

– Figure 8, Generate Fabric Task Output

– Figure 9, Generate Fabric iVerilog Compilation Output

• 4.6 Simulation

– Figure 10, full testbench/configuration chain Task Config

– Figure 11, full testbench/configuration chain Task Results

– Figure 12, 2 Input AND Configuration Phase

– Figure 13, 2 Input AND Evaluation Phase

– Figure 14, 2 Input AND Formal Results

• 5.1 Custom Verilog Modules

– Figure 16, Synthesis Fail with No Verilog Netlist Adder Path

– Figure 17, Custom Verilog Adder Successful Run

– Figure 18, Custom Verilog Adder Waveform Results

• 5.2 Custom Cell Library

– Figure 19, Skywater Hard Adder Task Result

– Figure 20, Skywater Synthesized LUT Netlist

– Figure 21, Skywater Hard Adder Task Waveform Results
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6.2 Future Work

A list of future items to learn more about OpenFPGA:

• Research FPGA-Spice

• Setup scripting for Place and Route with FPGA fabric

• Add more complex benchmark designs, compare tradeoffs of two verifica-
tion processes

• Integrate more heavily into Skywater 130nm open-source PDK and eFab-
less
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